Log in

Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The emergence of bone tissue engineering as a trend in regenerative medicine is forcing scientists to create highly functional materials and scaffold construction techniques. Bone tissue engineering uses 3D bio-printed scaffolds that allow and stimulate the attachment and proliferation of osteoinductive cells on their surfaces. Bone grafting is necessary to expedite the patient’s condition because the natural healing process of bones is slow. Fused deposition modeling (FDM) is therefore suggested as a technique for the production process due to its simplicity, ability to create intricate components and movable forms, and low running costs. 3D-printed scaffolds can repair bone defects in vivo and in vitro. For 3D printing, various materials including metals, polymers, and ceramics are often employed but polymeric biofilaments are promising candidates for replacing non-biodegradable materials due to their adaptability and environment friendliness. This review paper majorly focuses on the fused deposition modeling approach for the fabrication of 3D scaffolds. In addition, it also provides information on biofilaments used in FDM 3D printing, applications, and commercial aspects of scaffolds in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are given in the manuscript

References

  1. Abbasi, N., S. Hamlet, R. M. Love, and N.-T. Nguyen. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices. 5:1–9, 2020.

    Article  Google Scholar 

  2. Abdelaziz, A. G., H. Nageh, S. M. Abdo, M. S. Abdalla, A. A. Amer, A. Abdal-hay, and A. Barhoum. A review of 3D polymeric scaffolds for bone tissue engineering: principles, fabrication techniques. Immunomodulatory Roles Chall. 10:204, 2023.

    CAS  Google Scholar 

  3. Ahmed, A., A. Azam, M. M. Aslam Bhutta, F. A. Khan, R. Aslam, and Z. Tahir. Discovering the technology evolution pathways for 3D printing (3DP) using bibliometric investigation and emerging applications of 3DP during COVID-19. Clean. Environ. Syst. 3:100042, 2021.

    Article  Google Scholar 

  4. Aldhaher, A., F. Shahabipour, A. Shaito, S. Al-Assaf, A. A. M. Elnour, E. B. Sallam, S. Teimourtash, and A. A. Elfadil. 3D hydrogel/ bioactive glass scaffolds in bone tissue engineering: status and future opportunities. Heliyon.9:e17050, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alzoubi, L., A. A. A. Aljabali, and M. M. Tambuwala. Empowering precision medicine: the impact of 3D printing on personalized therapeutic. AAPS PharmSciTech. 24:228, 2023.

    Article  CAS  PubMed  Google Scholar 

  6. Amirazad, H., M. Dadashpour, and N. Zarghami. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J. Biol. Eng. 16:1, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amiri, E., P. Sanjarnia, B. Sadri, S. Jafarkhani, and M. Khakbiz. Recent advances and future directions of 3D to 6D printing in brain cancer treatment and neural tissue engineering. Biomed. Mater. 18:52005, 2023.

    Article  Google Scholar 

  8. Angulo-Pineda, C., K. Srirussamee, P. Palma, V. M. Fuenzalida, S. H. Cartmell, and H. Palza. Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials. 10:428, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anuar, H., N. A. A. Rahman, M. R. Manshor, Y. A. Alli, O. A. Alimi, F. Alif, and J. Suhr. Novel soda lignin/PLA/EPO biocomposite: a promising and sustainable material for 3D printing filament. Mater. Today Commun.35:106093, 2023.

    Article  CAS  Google Scholar 

  10. Bahraminasab, M. Challenges on optimization of 3D-printed bone scaffolds. Biomed. Eng. Online. 19:69, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Beheshtizadeh, N., M. Gharibshahian, Z. Pazhouhnia, M. Rostami, A. R. Zangi, R. Maleki, H. K. Azar, V. Zalouli, H. Rajavand, A. Farzin, N. Lotfibakhshaiesh, F. Sefat, M. Azami, T. J. Webster, and N. Rezaei. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomed. Pharmacother.153:113431, 2022.

    Article  CAS  PubMed  Google Scholar 

  12. Bhagia, S., K. Bornani, R. Agrawal, A. Satlewal, J. Ďurkovič, R. Lagaňa, M. Bhagia, C. G. Yoo, X. Zhao, V. Kunc, Y. Pu, S. Ozcan, and A. J. Ragauskas. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl. Mater. Today.24:101078, 2021.

    Article  Google Scholar 

  13. Bhaskar, B., R. Owen, H. Bahmaee, Z. Wally, P. Sreenivasa Rao, and G. C. Reilly. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds. J. Biomed. Mater. Res. Part A. 106:1334–1340, 2018.

    Article  CAS  Google Scholar 

  14. Bloom, O., N. Goddard, B. Yannoulias, and S. Eccles. The successful use of a bespoke OssDsign cranial plate to reconstruct an occipital defect following excision of a recurrent epithelioid sarcoma. JPRAS Open. 24:71–76, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bogala, M. R. Three-dimensional (3D) printing of hydroxyapatite-based scaffolds: a review. Bioprinting.28:e00244, 2022.

    Article  Google Scholar 

  16. Bozkurt, Y., and E. Karayel. 3D printing technology; methods, biomedical applications, future opportunities and trends. J. Mater. Res. Technol. 14:1430–1450, 2021.

    Article  CAS  Google Scholar 

  17. Budharaju, H., S. Suresh, M. P. Sekar, B. De Vega, S. Sethuraman, D. Sundaramurthi, and D. M. Kalaskar. Ceramic materials for 3D printing of biomimetic bone scaffolds—current state-of-the-art & future perspectives. Mater. Des.231:112064, 2023.

    Article  CAS  Google Scholar 

  18. Cestari, F., M. Petretta, Y. Yang, A. Motta, B. Grigolo, and V. M. Sglavo. 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering. Sustain. Mater. Technol.29:e00318, 2021.

    CAS  Google Scholar 

  19. Chen, J., M. Yu, B. Guo, P. X. Ma, and Z. Yin. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. J. Colloid Interface Sci. 514:517–527, 2018.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Y., and X. Li. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: respective featured applications and future prospects. Med. Nov. Technol. Devices.16:100168, 2022.

    Article  Google Scholar 

  21. Cheng, Z., L. **gong, D. Weiyi, H. **gen, W. Shuo, L. **ang**, and W. Junsong. Potential use of 3D-printed graphene oxide scaffold for construction of the cartilage layer. J. Nanobiotechnol. 18:97, 2020.

    Article  CAS  Google Scholar 

  22. Chinnasami, H., M. K. Dey, and R. Devireddy. Three-dimensional scaffolds for bone tissue engineering. Bioengineering. 10:759, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi, J.-W., K. Lee, Y.-H. Koh, and H.-E. Kim. Novel poly(ε-caprolactone) scaffolds comprised of tailored core/shell-structured filaments using 3D plotting technique. Mater. Lett.269:127659, 2020.

    Article  CAS  Google Scholar 

  24. Chowdhury, S. R., N. Keshavan, and B. Basu. Urinary bladder and urethral tissue engineering, and 3D bioprinting approaches for urological reconstruction. J. Mater. Res. 36:3781–3820, 2021.

    Article  CAS  Google Scholar 

  25. Chung, J., H. Im, S.-H. Kim, J. Park, and Y. Jung. Toward biomimetic scaffolds for tissue engineering: 3D printing techniques in regenerative medicine. Front. Bioeng. Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.586406.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Collins, M. N., G. Ren, K. Young, S. Pina, R. L. Reis, and J. M. Oliveira. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31:2010609, 2021.

    Article  CAS  Google Scholar 

  27. Dang, W., K. Yi, E. Ju, Y. **, Y. Xu, H. Wang, W.-C. Chen, K. Wang, Y. Wang, Y. Tao, and M. Li. 3D printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl. Mater. Interfaces. 13:18488–18499, 2021.

    Article  CAS  PubMed  Google Scholar 

  28. Das, M., O. Sharabani-Yosef, N. Eliaz, and D. Mandler. Hydrogel-integrated 3D-printed poly(lactic acid) scaffolds for bone tissue engineering. J. Mater. Res. 36:3833–3842, 2021.

    Article  CAS  Google Scholar 

  29. Deng, C., H. Zhu, J. Li, C. Feng, Q. Yao, L. Wang, J. Chang, and C. Wu. Bioactive scaffolds for regeneration of cartilage and subchondral bone interface. Theranostics. 8:1940–1955, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dizon, J. R. C., A. H. Espera, Q. Chen, and R. C. Advincula. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20:44–67, 2018.

    CAS  Google Scholar 

  31. Dubey, A., H. Vahabi, and V. Kumaravel. Antimicrobial and biodegradable 3D printed scaffolds for orthopedic infections. ACS Biomater. Sci. Eng. 9:4020–4044, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dwivedi, R., S. Kumar, R. Pandey, A. Mahajan, D. Nandana, D. S. Katti, and D. Mehrotra. Polycaprolactone as biomaterial for bone SCAFFOLDS: REVIEW OF literature. J. Oral Biol. Craniofacial Res. 10:381–388, 2020.

    Article  Google Scholar 

  33. Fang, H., Z. Deng, J. Liu, S. Chen, Z. Deng, and W. Li. The mechanism of bone remodeling after bone aging. Clin. Interv. Aging. 17:405–415, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, J., X. Yu, X. Wang, Y. He, and J. Ding. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engineering. 13:31–45, 2022.

    Article  CAS  Google Scholar 

  35. Haider, A., S. Haider, M. Rao Kummara, T. Kamal, A.-A.A. Alghyamah, F. Jan Iftikhar, B. Bano, N. Khan, M. Amjid Afridi, S. Soo Han, A. Alrahlah, and R. Khan. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: a technical and statistical review. J. Saudi Chem. Soc. 24:186–215, 2020.

    Article  CAS  Google Scholar 

  36. He, M., Y. Hou, C. Zhu, M. He, Y. Jiang, G. Feng, L. Liu, Y. Li, C. Chen, and L. Zhang. 3D-printing biodegradable PU/PAAM/Gel hydrogel scaffold with high flexibility and self-adaptibility to irregular defects for nonload-bearing bone regeneration. Bioconjug. Chem. 32:1915–1925, 2021.

    Article  CAS  PubMed  Google Scholar 

  37. He, Y., W. Liu, L. Guan, J. Chen, L. Duan, Z. Jia, J. Huang, W. Li, J. Liu, J. **ong, L. Liu, and D. Wang. A 3D-printed PLCL scaffold coated with collagen type I and its biocompatibility. Biomed Res. Int. 2018:5147156, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Iftekar, S. F., A. Aabid, A. Amir, and M. Baig. Advancements and limitations in 3D printing materials and technologies: a critical review. Polymers. 15:2519, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ilyas, R. A., M. Y. M. Zuhri, M. N. Norrrahim, M. S. Misenan, M. A. Jenol, S. A. Samsudin, N. M. Nurazzi, M. R. M. Asyraf, A. B. M. Supian, S. P. Bangar, R. Nadlene, S. Sharma, and A. A. B. Omran. Natural fiber-reinforced polycaprolactone green and hybrid biocomposites for various advanced applications. Polymer. 14:182, 2022.

    Article  CAS  Google Scholar 

  40. Jariwala, S. H., G. S. Lewis, Z. J. Bushman, J. H. Adair, and H. J. Donahue. 3D printing of personalized artificial bone scaffolds. 3D Print. Addit. Manuf. 2:56–64, 2015.

    Article  PubMed  Google Scholar 

  41. Jiang, N., B. Qi, X. Fan, L. Yao, Y. Wang, Z. Zhao, Y. Xu, and M. Hasmizam Razali. Fabrication of biocompatible and biodegradable polyvinyl alcohol/sodium alginate blend polymers incorporating Ca2+ doped TiO2 nanocomposite 3D scaffold for biomedical applications. J. Saudi Chem. Soc. 27:101758, 2023. https://doi.org/10.1016/j.jscs.2023.101758.

    Article  CAS  Google Scholar 

  42. Jirofti, N., M. Hashemi, A. Moradi, and F. Kalalinia. Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications. Int. J. Biol. Macromol.252:126279, 2023.

    Article  CAS  PubMed  Google Scholar 

  43. Jovic, T. H., E. J. Combellack, Z. M. Jessop, and I. S. Whitaker. 3D bioprinting and the future of surgery. Front. Surg.7:609836, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kaczmarek, B., A. Sionkowska, J. Kozlowska, and A. M. Osyczka. New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS. Int. J. Biol. Macromol. 107:247–253, 2018.

    Article  CAS  PubMed  Google Scholar 

  45. Kafle, A., E. Luis, R. Silwal, H. M. Pan, P. L. Shrestha, and A. K. Bastola. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymer. 13:3101, 2021.

    Article  CAS  Google Scholar 

  46. Kang, X., X. B. Zhang, X. D. Gao, D. J. Hao, T. Li, and Z. W. Xu. Bioprinting for bone tissue engineering. Front. Bioeng. Biotechnol. 10:1–7, 2022.

    Article  Google Scholar 

  47. Kang, Y., and J. Chang. Channels in a porous scaffold: a new player for vascularization. Regen. Med. 13:705–715, 2018.

    Article  CAS  PubMed  Google Scholar 

  48. Kanishka, K., and B. Acherjee. Revolutionizing manufacturing: a comprehensive overview of additive manufacturing processes, materials, developments, and challenges. J. Manuf. Process. 107:574–619, 2023.

    Article  Google Scholar 

  49. Kanwar, S., and S. Vijayavenkataraman. Design of 3D printed scaffolds for bone tissue engineering: a review. Bioprinting.24:e00167, 2021.

    Article  Google Scholar 

  50. Karamat-Ullah, N., Y. Demidov, M. Schramm, D. Grumme, J. Auer, C. Bohr, B. Brachvogel, and H. Maleki. 3D printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modified silk fibroin with silica nanostructure. ACS Biomater. Sci. Eng. 7:4545–4556, 2021.

    Article  CAS  PubMed  Google Scholar 

  51. Kennedy, S. W., N. Roy Choudhury, and R. Parthasarathy. 3D printing soft tissue scaffolds using Poly(caprolactone). Bioprinting. 30:e00259, 2023.

    Article  Google Scholar 

  52. Krishani, M., W. Y. Shin, H. Suhaimi, and N. S. Sambudi. Development of scaffolds from bio-based natural materials for tissue regeneration applications: a review. Gels. 9:100, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kristiawan, R. B., F. Imaduddin, and D. Ariawan. A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters. Open Eng. 11:639–649, 2021.

    Article  CAS  Google Scholar 

  54. Kumar, P., B. S. Dehiya, and A. Sindhu. Synthesis and characterization of nHA-PEG and nBG-PEG scaffolds for hard tissue engineering applications. Ceram. Int. 45:8370–8379, 2019.

    Article  CAS  Google Scholar 

  55. Kumar, P., M. Saini, B. S. Dehiya, A. Sindhu, V. Kumar, R. Kumar, L. Lamberti, C. I. Pruncu, and R. Thakur. Comprehensive survey on nanobiomaterials for bone tissue engineering applications. Nanomaterials. 10:2019, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lai, J., and M. Wang. Developments of additive manufacturing and 5D printing in tissue engineering. J. Mater. Res. 38:4692–4725, 2023.

    Article  CAS  Google Scholar 

  57. Lee, S. S., X. Du, I. Kim, and S. J. Ferguson. Scaffolds for bone-tissue engineering. Matter. 5:2722–2759, 2022.

    Article  CAS  Google Scholar 

  58. Lin, C., Y. Wang, Z. Huang, T. Wu, W. Xu, W. Wu, and Z. Xu. Advances in filament structure of 3D bioprinted biodegradable bone repair scaffolds. Int. J. Bioprint. 7:426, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, Y., Y. Ou, M. Xu, and J. Chen. Enhancing bone regeneration with bionic hydrolysis and biomimetic polydopamine coating on 3D-printed PCL scaffolds: a comparative study. Mater. Today Commun.37:107262, 2023.

    Article  CAS  Google Scholar 

  60. Liu, F., and X. Wang. Synthetic polymers for organ 3D printing. Polymers. 12:1765, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, Z., Y. Wang, B. Wu, C. Cui, Y. Guo, and C. Yan. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 102:2877–2889, 2019.

    Article  Google Scholar 

  62. Mallikarjuna, B., P. Bhargav, S. Hiremath, K. G. Jayachristiyan, and N. Jayanth. A review on the melt extrusion-based fused deposition modeling (FDM): background, materials, process parameters and military applications. Int. J. Interact. Des. Manuf. 2023. https://doi.org/10.1007/s12008-023-01354-0.

    Article  Google Scholar 

  63. Mani, M. P., M. Sadia, S. K. Jaganathan, A. Z. Khudzari, E. Supriyanto, S. Saidin, S. Ramakrishna, A. F. Ismail, and A. A. M. Faudzi. A review on 3D printing in tissue engineering applications. J. Polym. Eng. 42:243–265, 2022.

    Article  CAS  Google Scholar 

  64. Marin, E. Forged to heal: the role of metallic cellular solids in bone tissue engineering. Mater. Today Bio.23:100777, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martins, L. S., L. I. C. C. O. Cortat, N. C. Zanini, R. F. S. Barbosa, A. G. Souza, S. F. Medeiros, D. S. Rosa, and D. R. Mulinari. A versatile filler in polyhydroxyalcanoates filaments for FDM: a diverse panorama for pullulan application. Mater. Today Commun.28:102690, 2021.

    Article  CAS  Google Scholar 

  66. Mitchell, A., U. Lafont, M. Hołyńska, and C. Semprimoschnig. Additive manufacturing—a review of 4D printing and future applications. Addit. Manuf. 24:606–626, 2018.

    CAS  Google Scholar 

  67. Mohammadi Zerankeshi, M., R. Bakhshi, and R. Alizadeh. Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: a review. Bioprinting.25:e00191, 2022.

    Article  Google Scholar 

  68. Musa, L., N. Krishna Kumar, S. Z. Abd Rahim, M. S. Mohamad Rasidi, A. E. Watson Rennie, R. Rahman, A. Yousefi Kanani, and A. A. Azmi. A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling. J. Mater. Res. Technol. 20:2841–2858, 2022.

    Article  CAS  Google Scholar 

  69. N’Gatta, K. M., H. Belaid, J. El Hayek, E. F. Assanvo, M. Kajdan, N. Masquelez, D. Boa, V. Cavaillès, M. Bechelany, and C. Salameh. 3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering. Sci. Rep. 12:21244, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Naser, A. Z., I. Deiab, and B. M. Darras. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv. 11:17151–17196, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nevado, P., A. Lopera, V. Bezzon, M. R. Fulla, J. Palacio, M. A. Zaghete, G. Biasotto, A. Montoya, J. Rivera, S. M. Robledo, H. Estupiñan, C. Paucar, and C. Garcia. Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds. Mater. Sci. Eng. C.114:111013, 2020.

    Article  CAS  Google Scholar 

  72. Ngo, T. D., A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143:172–196, 2018.

    Article  CAS  Google Scholar 

  73. Nikolova, M. P., and M. S. Chavali. Recent advances in biomaterials for 3D scaffolds: a review. Bioact. Mater. 4:271–292, 2019.

    PubMed  PubMed Central  Google Scholar 

  74. Park, S., W. Shou, L. Makatura, W. Matusik, and K. Kelvin Fu. 3D printing of polymer composites: materials, processes, and applications. Matter. 5:43–76, 2022.

    Article  CAS  Google Scholar 

  75. Pavan Kalyan, B. G., and L. Kumar. 3D printing: applications in tissue engineering, medical devices, and drug delivery. AAPS PharmSciTech. 23:92, 2022.

    Article  CAS  PubMed  Google Scholar 

  76. Rahmatabadi, D., K. Soltanmohammadi, M. Pahlavani, M. Aberoumand, E. Soleyman, I. Ghasemi, M. Baniassadi, K. Abrinia, M. Bodaghi, and M. Baghani. Shape memory performance assessment of FDM 3D printed PLA-TPU composites by Box–Behnken response surface methodology. Int. J. Adv. Manuf. Technol. 127:935–950, 2023.

    Article  Google Scholar 

  77. Rayna, T., and L. Striukova. From rapid prototy** to home fabrication: how 3D printing is changing business model innovation. Technol. Forecast. Soc. Change. 102:214–224, 2016.

    Article  Google Scholar 

  78. Rivera-Briso, A. L., F. L. Aachmann, V. Moreno-Manzano, and Á. Serrano-Aroca. Graphene oxide nanosheets versus carbon nanofibers: enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Int. J. Biol. Macromol. 143:1000–1008, 2020.

    Article  CAS  PubMed  Google Scholar 

  79. Romero-Araya, P., V. Cárdenas, A. Nenen, G. Martínez, F. Pavicic, P. Ehrenfeld, G. Serandour, C. Covarrubias, M. Neira, I. Moreno-Villoslada, and M. E. Flores. Polycaprolactone scaffolds prepared by 3D printing electrosprayed with polyethylene glycol-polycaprolactone block copolymers for applications in bone tissue engineering. Polymer (Guildf).288:126448, 2023.

    Article  CAS  Google Scholar 

  80. Rotbaum, Y., C. Puiu, D. Rittel, and M. Domingos. Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures. Mater. Sci. Eng. C. 96:176–182, 2019.

    Article  CAS  Google Scholar 

  81. Santoni, S., S. G. Gugliandolo, M. Sponchioni, D. Moscatelli, and B. M. Colosimo. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Bio-Design Manuf. 5:14–42, 2022.

    Article  Google Scholar 

  82. Seethalakshmi, K., M. Kaviya, B. Venkatachalapathy, S. Mubeena, A. M. Punnoose, and T. M. Sridhar. Nanohydroxyapatite-doped polycaprolactone-based nanoscaffolds as a viable drug delivery agent in bone tissue engineering. J. Mater. Res. 36:420–430, 2021.

    Article  CAS  Google Scholar 

  83. Shabankhah, M., A. Moghaddaszadeh, and N. Najmoddin. 3D printed conductive PCL/GO scaffold immobilized with gelatin/CuO accelerates H9C2 cells attachment and proliferation. Prog. Org. Coat.186:108013, 2024.

    Article  CAS  Google Scholar 

  84. Shafqat, Z., N. Munir, N. Inayat, M. A. Khan, M. A. Fareed, and M. S. Zafar. Calcium phosphate-loaded novel polypropylene glycol-based dental resin composites: evaluation of in vitro bioactivity. J. Compos. Sci. 7:140, 2023.

    Article  CAS  Google Scholar 

  85. Shahrubudin, N., P. Koshy, J. Alipal, M. H. A. Kadir, and T. C. Lee. Challenges of 3D printing technology for manufacturing biomedical products: a case study of Malaysian manufacturing firms. Heliyon.6:e03734, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su, X., T. Wang, and S. Guo. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen. Ther. 16:63–72, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Suamte, L., A. Tirkey, J. Barman, and P. Jayasekhar Babu. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater. Manuf.1:100011, 2023.

    Google Scholar 

  88. Sultana, J., M. M. Rahman, Y. Wang, A. Ahmed, and C. **aohu. Influences of 3D printing parameters on the mechanical properties of wood PLA filament: an experimental analysis by Taguchi method. Prog. Addit. Manuf. 2023. https://doi.org/10.1007/s40964-023-00516-6.

    Article  Google Scholar 

  89. Suo, H., Y. Chen, J. Liu, L. Wang, and M. Xu. 3D printing of biphasic osteochondral scaffold with sintered hydroxyapatite and polycaprolactone. J. Mater. Sci. 56:16623–16633, 2021.

    Article  CAS  Google Scholar 

  90. Tappa, K., and U. Jammalamadaka. Novel biomaterials used in medical 3D printing techniques. J. Funct. Biomater. 9:17, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Top, N., İ Şahin, H. Gökçe, and H. Gökçe. Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art. J. Mater. Res. 36:3725–3745, 2021.

    Article  CAS  Google Scholar 

  92. Turnbull, G., J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, and W. Shu. 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3:278–314, 2018.

    PubMed  Google Scholar 

  93. Vallejos Baier, R., J. I. Contreras Raggio, C. Toro Arancibia, M. Bustamante, L. Pérez, I. Burda, A. Aiyangar, and J. F. Vivanco. Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer. Mater. Sci. Eng. C.123:111945, 2021.

    Article  CAS  Google Scholar 

  94. Vasanthan, K. S., V. Srinivasan, V. Mathur, P. Agarwal, N. Negi, and S. Kumari. 3D Bioprinting for esophageal tissue regeneration: a review. J. Mater. Res. 37:88–113, 2022.

    Article  CAS  Google Scholar 

  95. Wei, S., J.-X. Ma, L. Xu, X.-S. Gu, and X.-L. Ma. Biodegradable materials for bone defect repair. Mil. Med. Res. 7:54, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Xu, C., Y. Sun, J. Jansen, M. Li, L. Wei, Y. Wu, and Y. Liu. Calcium phosphate ceramics and synergistic bioactive agents for osteogenesis in implant dentistry. Tissue Eng. Part C Methods. 29:197–215, 2023.

    Article  CAS  PubMed  Google Scholar 

  97. Xu, Y., F. Zhang, W. Zhai, S. Cheng, J. Li, and Y. Wang. Unraveling of advances in 3D-printed polymer-based bone scaffolds. Polymers. 14:566, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yaseri, R., M. Fadaie, E. Mirzaei, H. Samadian, and A. Ebrahiminezhad. Surface modification of polycaprolactone nanofibers through hydrolysis and aminolysis: a comparative study on structural characteristics, mechanical properties, and cellular performance. Sci. Rep. 13:9434, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, B., L. Gao, L. Ma, Y. Luo, H. Yang, and Z. Cui. 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering. 5:777–794, 2019.

    Article  CAS  Google Scholar 

  100. Zhang, J., K. He, D. Zhang, J. Dong, B. Li, Y. Liu, G. Gao, and Z. Jiang. Three-dimensional printing of energetic materials: a review. Energ. Mater. Front. 3:97–108, 2022.

    Article  CAS  Google Scholar 

  101. Zhongxing, L., W. Shaohong, L. **long, Z. Limin, W. Yuanzheng, G. Haipeng, and C. Jian. Three-dimensional printed hydroxyapatite bone tissue engineering scaffold with antibacterial and osteogenic ability. J. Biol. Eng. 15:21, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhu, G., T. Zhang, M. Chen, K. Yao, X. Huang, B. Zhang, Y. Li, J. Liu, Y. Wang, and Z. Zhao. Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds. Bioact. Mater. 6:4110–4140, 2021.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhuang, H., R. Lin, Y. Liu, M. Zhang, D. Zhai, Z. Huan, and C. Wu. Three-dimensional-printed bioceramic scaffolds with osteogenic activity for simultaneous photo/magnetothermal therapy of bone tumors. ACS Biomater. Sci. Eng. 5:6725–6734, 2019.

    Article  CAS  PubMed  Google Scholar 

  104. Zieliński, P. S., P. K. R. Gudeti, T. Rikmanspoel, and M. K. Włodarczyk-Biegun. 3D printing of bio-instructive materials: toward directing the cell. Bioact. Mater. 19:292–327, 2023.

    PubMed  Google Scholar 

Download references

Funding

No funding is available for this work.

Author information

Authors and Affiliations

Authors

Contributions

PK: Conception and writing of the manuscript. S, MM, and TA: Writing and validation. JB and HSS: Validation and writing. AB: Writing and drafting.

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal interests that could have appeared to influence the work reported in this paper.

Consent to Participate

Informed consent was obtained from all the authors involved in the study.

Consent to Publication

Informed consent was obtained from all the authors involved in this paper.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Shamim, Muztaba, M. et al. Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review. Ann Biomed Eng 52, 1184–1194 (2024). https://doi.org/10.1007/s10439-024-03479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-024-03479-z

Keywords

Navigation