Log in

Smartwatch-Based Prediction of Single-Stride and Stride-to-Stride Gait Outcomes Using Regression-Based Machine Learning

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Spatiotemporal variability during gait is linked to fall risk and could be monitored using wearable sensors. Although many users prefer wrist-worn sensors, most applications position at other sites. We developed and evaluated an application using a consumer-grade smartwatch inertial measurement unit (IMU). Young adults (n = 41) completed seven-minute conditions of treadmill gait at three speeds. Single-stride outcomes (stride time, length, width, and speed) and spatiotemporal variability (coefficient of variation of each single-stride outcome) were recorded using an optoelectronic system, while 232 single- and multi-stride IMU metrics were recorded using an Apple Watch Series 5. These metrics were input to train linear, ridge, support vector machine (SVM), random forest, and extreme gradient boosting (xGB) models of each spatiotemporal outcome. We conducted Model × Condition ANOVAs to explore model sensitivity to speed-related responses. xGB models were best for single-stride outcomes [relative mean absolute error (% error): 7–11%; intraclass correlation coefficient (ICC2,1) 0.60–0.86], and SVM models were best for spatiotemporal variability (% error: 18–22%; ICC2,1 = 0.47–0.64). Spatiotemporal changes with speed were captured by these models (Condition: p < 0.00625). Results support the feasibility of monitoring single-stride and multi-stride spatiotemporal parameters using a smartwatch IMU and machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bailey, C. A., M. Porta, G. Pilloni, F. Arippa, J. N. Côté, and M. Pau. Does variability in motor output at individual joints predict stride time variability in gait? Influences of age, sex, and plane of motion. J. Biomech. 99:109574, 2020.

    PubMed  Google Scholar 

  2. Bailey, C. A., T. K. Uchida, J. Nantel, and R. B. Graham. Validity and sensitivity of an inertial measurement unit-driven biomechanical model of motor variability for gait. Sensors. 21:7690, 2021.

    PubMed  PubMed Central  Google Scholar 

  3. Bamberg, S. J. M., A. Y. Benbasat, D. M. Scarborough, D. E. Krebs, and J. A. Paradiso. Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12:413–423, 2008.

    PubMed  Google Scholar 

  4. Beauchet, O., G. Allali, H. Sekhon, J. Verghese, S. Guilain, J.-P. Steinmetz, R. W. Kressig, J. M. Barden, T. Szturm, C. P. Launay, S. Grenier, L. Bherer, T. Liu-Ambrose, V. L. Chester, M. L. Callisaya, V. Srikanth, G. Léonard, A.-M. De Cock, R. Sawa, G. Duque, R. Camicioli, and J. L. Helbostad. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: the Biomathics and Canadian Gait Consortiums Initiative. Front. Hum. Neurosci. 11:353, 2017.

    PubMed  PubMed Central  Google Scholar 

  5. Bovi, G., M. Rabuffetti, P. Mazzoleni, and M. Ferrarin. A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture. 33:6–13, 2011.

    PubMed  Google Scholar 

  6. Brach, J. S., J. E. Berlin, J. M. VanSwearingen, A. B. Newman, and S. A. Studenski. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. J. Neuroeng. Rehabil. 2:21, 2005.

    PubMed  PubMed Central  Google Scholar 

  7. Breiman, L. Random forests. Mach. Learn. 45:5–32, 2001.

    Google Scholar 

  8. Chehab, E. F., T. P. Andriacchi, and J. Favre. Speed, age, sex, and body mass index provide a rigorous basis for comparing the kinematic and kinetic profiles of the lower extremity during walking. J. Biomech. 58:11–20, 2017.

    CAS  PubMed  Google Scholar 

  9. Chen, S., J. Lach, B. Lo, and G. Z. Yang. Toward pervasive gait analysis with wearable sensors: a systematic review. IEEE J. Biomed. Health Inform. 20:1521–1537, 2016.

    PubMed  Google Scholar 

  10. Chen, T., and C. Guestrin. XGBoost: a scalable tree boosting system. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 785–794, 2016.

  11. Cicchetti, D. V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 6:284–290, 1994.

    Google Scholar 

  12. Costa, M., C.-K. Peng, A. L. Goldberger, and J. M. Hausdorff. Multiscale entropy analysis of human gait dynamics. Phys. A: Stat. Mech. Appl. 330:53–60, 2003.

    CAS  Google Scholar 

  13. Crea, S., M. Donati, S. M. M. De Rossi, C. Maria Oddo, and N. Vitiello. A wireless flexible sensorized insole for gait analysis. Sensors. 14:1073–1093, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dingwell, J. B., and L. C. Marin. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39:444–452, 2006.

    PubMed  Google Scholar 

  15. Erdem, N. S., C. Ersoy, and C. Tunca. Gait analysis using smartwatches. Proc. IEEE 30th Int. Sympos. Person. Indoor Mob. Radio Commun., pp. 1–6, 2019.

  16. Ferrari, A., P. Ginis, M. Hardegger, F. Casamassima, L. Rocchi, and L. Chiari. A mobile Kalman-filter based solution for the real-time estimation of spatio-temporal gait parameters. IEEE Trans. Neural Syst. Rehabil. Eng. 24:764–773, 2016.

    PubMed  Google Scholar 

  17. Fusca, M., F. Negrini, P. Perego, L. Magoni, F. Molteni, and G. Andreoni. Validation of a wearable IMU system for gait analysis: protocol and application to a new system. Appl. Sci. 8:1167, 2018.

    Google Scholar 

  18. Hannink, J., T. Kautz, C. F. Pasluosta, J. Barth, S. Schulein, K.-G. Gassmann, J. Klucken, and B. M. Eskofier. Mobile stride length estimation with deep convolutional neural networks. IEEE J. Biomed. Health Inform. 22:354–362, 2018.

    PubMed  Google Scholar 

  19. Hausdorff, J. M. Gait variability: methods, modeling and meaning. J. Neuroeng. Rehabil. 2:19, 2005.

    PubMed  PubMed Central  Google Scholar 

  20. Hausdorff, J. M., D. A. Rios, and H. K. Edelberg. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82:1050–1056, 2001.

    CAS  PubMed  Google Scholar 

  21. Hicks, J. L., T. K. Uchida, A. Seth, A. Rajagopal, and S. L. Delp. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J. Biomech. Eng. 137:020905, 2015.

    PubMed  Google Scholar 

  22. Hoerl, A. E., and R. W. Kennard. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 12:55–67, 1970.

    Google Scholar 

  23. Hofmann, T., B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. Ann. Stat. 36:1171–1220, 2008.

    Google Scholar 

  24. Hollman, J. H., M. K. Watkins, A. C. Imhoff, C. E. Braun, K. A. Akervik, and D. K. Ness. A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions. Gait Posture. 43:204–209, 2016.

    PubMed  Google Scholar 

  25. Holmes, H. H., R. T. Fawcett, and J. A. Roper. Changes in spatiotemporal measures and variability during user-driven treadmill, fixed-speed treadmill, and overground walking in young adults: a pilot study. J. Appl. Biomech. 37:277–281, 2021.

    PubMed  Google Scholar 

  26. Johnston, A. H., and G. M. Weiss. Smartwatch-based biometric gait recognition. Proc. IEEE 7th Int. Conf. Biom. Theory Appl. Syst. (BTAS), pp. 1–6, 2015.

  27. Kang, H. G., and J. B. Dingwell. Separating the effects of age and walking speed on gait variability. Gait Posture. 27:572–577, 2008.

    PubMed  Google Scholar 

  28. Kanko, R. M., E. K. Laende, G. Strutzenberger, M. Brown, W. S. Selbie, V. DePaul, S. H. Scott, and K. J. Deluzio. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. J. Biomech. 122:110414, 2021.

    PubMed  Google Scholar 

  29. König, N., N. B. Singh, J. von Beckerath, L. Janke, and W. R. Taylor. Is gait variability reliable? An assessment of spatio-temporal parameters of gait variability during continuous overground walking. Gait Posture. 39:615–617, 2014.

    PubMed  Google Scholar 

  30. Liu, J., T. Lockhart, and S. Kim. Prediction of the spatio-temporal gait parameters using inertial sensor. J. Mech. Med. Biol. 18:1840002, 2018.

    Google Scholar 

  31. Maki, B. E. Gait changes in older adults: predictors of falls or indicators of fear? J. Am. Geriatr. Soc. 45:313–320, 1997.

    CAS  PubMed  Google Scholar 

  32. Mao, Y., T. Ogata, H. Ora, N. Tanaka, and Y. Miyake. Estimation of stride-by-stride spatial gait parameters using inertial measurement unit attached to the shank with inverted pendulum model. Sci. Rep. 11:1391, 2021.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mazilu, S., U. Blanke, A. Calatroni, E. Gazit, J. M. Hausdorff, and G. Tröster. The role of wrist-mounted inertial sensors in detecting gait freeze episodes in Parkinson’s disease. Pervasive Mob. Comput. 33:1–16, 2016.

    Google Scholar 

  34. Mirelman, A., H. Bernad-Elazari, T. Nobel, A. Thaler, A. Peruzzi, M. Plotnik, N. Giladi, and J. M. Hausdorff. Effects of aging on arm swing during gait: the role of gait speed and dual tasking. PLoS ONE. 10:e0136043, 2015.

    PubMed  PubMed Central  Google Scholar 

  35. Ngueleu, A. M., A. K. Blanchette, L. Bouyer, D. Maltais, B. J. McFadyen, H. Moffet, and C. S. Batcho. Design and accuracy of an instrumented insole using pressure sensors for step count. Sensors. 19:984, 2019.

    PubMed  PubMed Central  Google Scholar 

  36. Niknejad, N., W. B. Ismail, A. Mardani, H. Liao, and I. Ghani. A comprehensive overview of smart wearables: the state of the art literature, recent advances, and future challenges. Eng. Appl. Artif. Intell. 90:103529, 2020.

    Google Scholar 

  37. O’Day, J., M. Lee, K. Seagers, S. Hoffman, A. Jih-Schiff, Ł Kidziński, S. Delp, and H. Bronte-Stewart. Assessing inertial measurement unit locations for freezing of gait detection and patient preference. J. Neuroeng. Rehabil. 19:20, 2022.

    PubMed  PubMed Central  Google Scholar 

  38. Pacini Panebianco, G., M. C. Bisi, R. Stagni, and S. Fantozzi. Analysis of the performance of 17 algorithms from a systematic review: influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture. 66:76–82, 2018.

    PubMed  Google Scholar 

  39. Postuma, R. B., D. Berg, M. Stern, W. Poewe, C. W. Olanow, W. Oertel, J. Obeso, K. Marek, I. Litvan, A. E. Lang, G. Halliday, C. G. Goetz, T. Gasser, B. Dubois, P. Chan, B. R. Bloem, C. H. Adler, and G. Deuschl. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30:1591–1601, 2015.

    PubMed  Google Scholar 

  40. Rajagopal, A., C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63:2068–2079, 2016.

    PubMed  PubMed Central  Google Scholar 

  41. Rebula, J. R., L. V. Ojeda, P. G. Adamczyk, and A. D. Kuo. Measurement of foot placement and its variability with inertial sensors. Gait Posture. 38:974–980, 2013.

    PubMed  PubMed Central  Google Scholar 

  42. De Ridder, R., J. Lebleu, T. Willems, C. De Blaiser, C. Detrembleur, and P. Roosen. Concurrent validity of a commercial wireless trunk triaxial accelerometer system for gait analysis. J. Sport Rehabil. 28:1–4, 2019.

    Google Scholar 

  43. Riva, F., M. C. Bisi, and R. Stagni. Gait variability and stability measures: minimum number of strides and within-session reliability. Comput. Biol. Med. 50:9–13, 2014.

    CAS  PubMed  Google Scholar 

  44. Seth, A., J. L. Hicks, T. K. Uchida, A. Habib, C. L. Dembia, J. J. Dunne, C. F. Ong, M. S. DeMers, A. Rajagopal, M. Millard, S. R. Hamner, E. M. Arnold, J. R. Yong, S. K. Lakshmikanth, M. A. Sherman, J. P. Ku, and S. L. Delp. OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14:e1006223, 2018.

    PubMed  PubMed Central  Google Scholar 

  45. Springer, S., and G. Yogev Seligmann. Validity of the kinect for gait assessment: a focused review. Sensors. 16:194, 2016.

    PubMed  PubMed Central  Google Scholar 

  46. Subramaniam, S., S. Majumder, A. I. Faisal, and M. J. Deen. Insole-based systems for health monitoring: current solutions and research challenges. Sensors. 22:438, 2022.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Teufl, W., M. Miezal, B. Taetz, M. Fröhlich, and G. Bleser. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. PLoS ONE. 14:e0213064, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tunca, C., N. Pehlivan, N. Ak, B. Arnrich, G. Salur, and C. Ersoy. Inertial sensor-based robust gait analysis in non-hospital settings for neurological disorders. Sensors. 17:825, 2017.

    PubMed  PubMed Central  Google Scholar 

  49. Usmani, S., A. Saboor, M. Haris, M. A. Khan, and H. Park. Latest research trends in fall detection and prevention using machine learning: a systematic review. Sensors. 21:5134, 2021.

    PubMed  PubMed Central  Google Scholar 

  50. Washabaugh, E. P., T. Kalyanaraman, P. G. Adamczyk, E. S. Claflin, and C. Krishnan. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture. 55:87–93, 2017.

    PubMed  PubMed Central  Google Scholar 

  51. Woltring, H. J. A Fortran package for generalized, cross-validatory spline smoothing and differentiation. Adv. Eng. Softw. 8:104–113, 1986.

    Google Scholar 

  52. Wren, T. A. L., G. E. Gorton, S. Õunpuu, and C. A. Tucker. Efficacy of clinical gait analysis: a systematic review. Gait Posture. 34:149–153, 2011.

    PubMed  Google Scholar 

  53. Wu, Y., Y. Li, A.-M. Liu, F. **ao, Y.-Z. Wang, F. Hu, J.-L. Chen, K.-R. Dai, and D.-Y. Gu. Effect of active arm swing to local dynamic stability during walking. Hum. Mov. Sci. 45:102–109, 2016.

    PubMed  Google Scholar 

  54. Zhang, H., Y. Guo, and D. Zanotto. Accurate ambulatory gait analysis in walking and running using machine learning models. IEEE Trans. Neural Syst. Rehabil. Eng. 28:191–202, 2020.

    CAS  PubMed  Google Scholar 

  55. Zhou, L., C. Tunca, E. Fischer, C. M. Brahms, C. Ersoy, U. Granacher, and B. Arnrich. Validation of an IMU gait analysis algorithm for gait monitoring in daily life situations. Proc. 42nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), pp. 4229–4232, 2020.

Download references

Acknowledgements

The authors thank the participants for volunteering their time.

Funding

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC), by the Ontario Ministry of Research, Innovation and Science Early Researcher Award, by postdoctoral fellowships from NSERC and the uOttawa-Children’s Hospital of Eastern Ontario Research Institute, and by the Apple Investigator Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan B. Graham.

Ethics declarations

Conflict of interest

Apple Inc. supplied the smartwatches used in this study as part of the Investigator Support Program. Apple Inc. and funding sources had no involvement in study design, data collection, analysis, and interpretation, or writing of the manuscript. The authors have no other conflicts of interest to declare.

Additional information

Associate Editor Jillian Urban oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, C.A., Mir-Orefice, A., Uchida, T.K. et al. Smartwatch-Based Prediction of Single-Stride and Stride-to-Stride Gait Outcomes Using Regression-Based Machine Learning. Ann Biomed Eng 51, 2504–2517 (2023). https://doi.org/10.1007/s10439-023-03290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03290-2

Keywords

Navigation