Log in

Transcorneal Electrical Stimulation Reduces Neurodegenerative Process in a Mouse Model of Glaucoma

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Glaucoma is a neurodegenerative disease in which the retinal ganglion cell axons of the optic nerve degenerate concomitant with synaptic changes in the retina, leading finally to death of the retinal ganglion cells (RGCs). Electrical stimulation has been used to improve neural regeneration in a variety of systems, including in diseases of the retina. Therefore, the focus of this study was to investigate whether transcorneal electrical stimulation (TES) in the DBA2/J mouse model of glaucoma could improve retinal or optic nerve pathology and serve as a minimally invasive treatment option. Mice (10 months-old) received 21 sessions of TES over 8 weeks, after which we evaluated RGC number, axon number, and anterograde axonal transport using histology and immunohistochemistry. To gain insight into the mechanism of proposed protection, we also evaluated inflammation by quantifying CD3+ T-cells and Iba1+ microglia; perturbations in metabolism were shown via the ratio pAMPK to AMPK, and changes in trophic support were tested using protein capillary electrophoresis. We found that TES resulted in RGC axon protection, a reduction in inflammatory cells and their activation, improved energy homeostasis, and a reduction of the cell death-associated p75NTR. Collectively, the data indicated that TES maintained axons, decreased inflammation, and increased trophic factor support, in the form of receptor presence and energy homeostasis, suggesting that electrical stimulation impacts several facets of the neurodegenerative process in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Agostinone, J., L. Alarcon-Martinez, C. Gamlin, W. Q. Yu, R. O. L. Wong, and A. Di Polo. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 141:1963–1980, 2018.

    PubMed  PubMed Central  Google Scholar 

  2. Al-Majed, A. A., T. M. Brushart, and T. Gordon. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur. J. Neurosci. 12:4381–4390, 2000.

    CAS  PubMed  Google Scholar 

  3. Baba, T., M. Kameda, T. Yasuhara, T. Morimoto, A. Kondo, T. Shingo, N. Tajiri, F. Wang, Y. Miyoshi, C. V. Borlongan, M. Matsumae, and I. Date. Electrical stimulation of the cerebral cortex exerts antiapoptotic, angiogenic, and anti-inflammatory effects in ischemic stroke rats through phosphoinositide 3-kinase/Akt signaling pathway. Stroke 40:e598–605, 2009.

    PubMed  Google Scholar 

  4. Bai, Y., J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi. An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma. Invest. Ophthalmol. Vis. Sci. 51:4722–4731, 2010.

    PubMed  Google Scholar 

  5. Baltan, S., D. M. Inman, C. A. Danilov, R. S. Morrison, D. J. Calkins, and P. J. Horner. Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration. J. Neurosci. 30:5644–5652, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bosco, A., M. R. Steele, and M. L. Vetter. Early microglia activation in a mouse model of chronic glaucoma. .J Comp. Neurol. 519:599–620, 2011.

    PubMed  PubMed Central  Google Scholar 

  7. Buckingham, B. P., D. M. Inman, W. Lambert, E. Oglesby, D. J. Calkins, M. R. Steele, M. L. Vetter, N. Marsh-Armstrong, and P. J. Horner. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J. Neurosci. 28:2735–2744, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, H., K. S. Cho, T. H. K. Vu, C. H. Shen, M. Kaur, G. Chen, R. Mathew, M. L. McHam, A. Fazelat, K. Lashkari, N. P. B. Au, J. K. Y. Tse, Y. Li, H. Yu, L. Yang, J. Stein-Streilein, C. H. E. Ma, C. J. Woolf, M. T. Whary, M. J. Jager, J. G. Fox, J. Chen, and D. F. Chen. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat. Commun. 9:3209, 2018.

    PubMed  PubMed Central  Google Scholar 

  9. Coassin, M., A. Lambiase, V. Sposato, A. Micera, S. Bonini, and L. Aloe. Retinal p75 and bax overexpression is associated with retinal ganglion cells apoptosis in a rat model of glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 246:1743–1749, 2008.

    CAS  PubMed  Google Scholar 

  10. Cooper, M. L., S. D. Crish, D. M. Inman, P. J. Horner, and D. J. Calkins. Early astrocyte redistribution in the optic nerve precedes axonopathy in the DBA/2 J mouse model of glaucoma. Exp. Eye Res. 150:22–33, 2016.

    CAS  PubMed  Google Scholar 

  11. Coughlin, L., R. S. Morrison, P. J. Horner, and D. M. Inman. Mitochondrial morphology differences and mitophagy deficit in murine glaucomatous optic nerve. Invest. Ophthalmol. Vis. Sci. 56:1437–1446, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Daly, C., R. Ward, A. L. Reynolds, O. Galvin, R. F. Collery, and B. N. Kennedy. Brain-Derived Neurotrophic Factor as a Treatment Option for Retinal Degeneration. Adv. Exp. Med. Biol. 1074:465–471, 2018.

    CAS  PubMed  Google Scholar 

  13. Dengler-Crish, C. M., M. A. Smith, D. M. Inman, G. N. Wilson, J. W. Young, and S. D. Crish. Anterograde transport blockade precedes deficits in retrograde transport in the visual projection of the DBA/2J mouse model of glaucoma. Front. Neurosci. 8:290, 2014.

    PubMed  PubMed Central  Google Scholar 

  14. Frade, J. M., P. Bovolenta, J. R. Martínez-Morales, A. Arribas, J. A. Barbas, and A. Rodríguez-Tébar. Control of early cell death by BDNF in the chick retina. Development 124:3313–3320, 1997.

    CAS  PubMed  Google Scholar 

  15. Fujikado, T., T. Morimoto, K. Matsushita, H. Shimojo, Y. Okawa, and Y. Tano. Effect of transcorneal electrical stimulation in patients with nonarteritic ischemic optic neuropathy or traumatic optic neuropathy. Jpn. J. Ophthalmol. 50:266–273, 2006.

    PubMed  Google Scholar 

  16. Gall, C., S. Schmidt, M. P. Schittkowski, A. Antal, G. G. Ambrus, W. Paulus, M. Dannhauer, R. Michalik, A. Mante, M. Bola, A. Lux, S. Kropf, S. A. Brandt, and B. A. Sabel. Alternating current stimulation for vision restoration after optic nerve damage: a randomized clinical trial. PLoS ONE 11:e0156134, 2016.

    PubMed  PubMed Central  Google Scholar 

  17. Gao, H., X. Qiao, F. Hefti, J. G. Hollyfield, and B. Knusel. Elevated mRNA expression of brain-derived neurotrophic factor in retinal ganglion cell layer after optic nerve injury. Invest. Ophthalmol. Vis. Sci. 38:1840–1847, 1997.

    CAS  PubMed  Google Scholar 

  18. Garcia, D., and R. J. Shaw. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66:789–800, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Geeraerts, E., M. Claes, E. Dekeyster, M. Salinas-Navarro, L. De Groef, C. Van den Haute, I. Scheyltjens, V. Baekelandt, L. Arckens, and L. Moons. Optogenetic stimulation of the superior colliculus confers retinal neuroprotection in a mouse glaucoma model. J. Neurosci. 39:2313–2325, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta, N., T. Ly, Q. Zhang, P. L. Kaufman, R. N. Weinreb, and Y. H. Yucel. Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp. Eye Res. 84:176–184, 2007.

    CAS  PubMed  Google Scholar 

  21. Gupta, V., Y. You, J. Li, V. Gupta, M. Golzan, A. Klistorner, M. van den Buuse, and S. Graham. BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim. Biophys. Acta 1567–1578:2014, 1842.

    Google Scholar 

  22. Harada, C., T. Harada, K. Nakamura, Y. Sakai, K. Tanaka, and L. F. Parada. Effect of p75NTR on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye. Dev. Biol. 290:57–65, 2006.

    CAS  PubMed  Google Scholar 

  23. Harun-Or-Rashid, M., N. Pappenhagen, P. G. Palmer, M. A. Smith, V. Gevorgyan, G. N. Wilson, S. D. Crish, and D. M. Inman. Structural and functional rescue of chronic metabolically stressed optic nerves through respiration. J. Neurosci. 38:5122–5139, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Howell, G. R., I. Soto, X. Zhu, M. Ryan, D. G. Macalinao, G. L. Sousa, L. B. Caddle, K. H. MacNicoll, J. M. Barbay, V. Porciatti, M. G. Anderson, R. S. Smith, A. F. Clark, R. T. Libby, and S. W. John. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J. Clin. Invest. 122:1246–1261, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Inman, D. M., R. M. Sap**ton, P. J. Horner, and D. J. Calkins. Quantitative correlation of optic nerve pathology with ocular pressure and corneal thickness in the DBA/2 mouse model of glaucoma. Invest. Ophthalmol. Vis. Sci. 47:986–996, 2006.

    PubMed  Google Scholar 

  26. Jassim, A. H., and D. M. Inman. Evidence of hypoxic glial cells in a model of ocular hypertension. Invest. Ophthalmol. Vis. Sci. 60:1–15, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. John, S. W. M., R. S. Smith, O. V. Savinova, N. L. Hawes, B. Chang, D. Turnbull, M. Davisson, T. H. Roderick, and J. H. Heckenlively. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J Mice. IOVS 39:1998, 1998.

    Google Scholar 

  28. Kameda, M., T. Shingo, K. Takahashi, K. Muraoka, K. Kurozumi, T. Yasuhara, T. Maruo, T. Tsuboi, T. Uozumi, T. Matsui, Y. Miyoshi, H. Hamada, and I. Date. Adult neural stem and progenitor cells modified to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur. J. Neurosci. 26:1462–1478, 2007.

    CAS  PubMed  Google Scholar 

  29. Kaplan, S., S. Geuna, G. Ronchi, M. B. Ulkay, and C. S. von Bartheld. Calibration of the stereological estimation of the number of myelinated axons in the rat sciatic nerve: a multicenter study. J. Neurosci. Methods 187:90–99, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Khatib, T. Z., and K. R. Martin. Neuroprotection in glaucoma: towards clinical trials and precision medicine. Curr. Eye Res. 45:327–338, 2020.

    PubMed  Google Scholar 

  31. Libby, R. T., M. G. Anderson, I. H. Pang, Z. H. Robinson, O. V. Savinova, I. M. Cosma, A. Snow, L. A. Wilson, R. S. Smith, A. F. Clark, and S. W. John. Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis. Neurosci. 22:637–648, 2005.

    PubMed  Google Scholar 

  32. Morimoto, T., T. Fujikado, J. S. Choi, H. Kanda, T. Miyoshi, Y. Fukuda, and Y. Tano. Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Invest. Ophthalmol. Vis. Sci. 48:4725–4732, 2007.

    PubMed  Google Scholar 

  33. Morimoto, T., T. Miyoshi, S. Matsuda, Y. Tano, T. Fujikado, and Y. Fukuda. Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Invest. Ophthalmol. Vis. Sci. 46:2147–2155, 2005.

    PubMed  Google Scholar 

  34. Mysona, B. A., J. Zhao, and K. E. Bollinger. Role of BDNF/TrkB pathway in the visual system: therapeutic implications for glaucoma. Expert Rev. Ophthalmol. 12:69–81, 2017.

    CAS  PubMed  Google Scholar 

  35. Ni, Y. Q., D. K. Gan, H. D. Xu, G. Z. Xu, and C. D. Da. Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp. Neurol. 219:439–452, 2009.

    PubMed  Google Scholar 

  36. Oono, S., T. Kurimoto, R. Kashimoto, Y. Tagami, N. Okamoto, and O. Mimura. Transcorneal electrical stimulation improves visual function in eyes with branch retinal artery occlusion. Clin. Ophthalmol. 5:397–402, 2011.

    PubMed  PubMed Central  Google Scholar 

  37. Park, H. Y., and C. K. Park. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol. Brian 7:1–10, 2014.

    Google Scholar 

  38. Peinado-Ramón, P., M. Salvador, M. P. Villegas-Pérez, and M. Vidal-Sanz. Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells: a quantitative in vivo study. Invest. Ophthalmol. Vis. Sci. 37:489–500, 1996.

    PubMed  Google Scholar 

  39. Quigley, H. A., G. R. Dunkelberger, and W. R. Green. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 95:357–363, 1988.

    CAS  PubMed  Google Scholar 

  40. Sagdullaev, B. T., P. J. DeMarco, and M. A. McCall. Improved contact lens electrode for corneal ERG recordings in mice. Doc. Ophthalmol. 108:181–184, 2004.

    PubMed  Google Scholar 

  41. Sambhara, D., and A. A. Aref. Glaucoma management: relative value and place in therapy of available drug treatments. Ther. Adv. Chronic Dis. 5:30–43, 2014.

    PubMed  PubMed Central  Google Scholar 

  42. Schneider, C., W. S. Rasband, and K. W. Eliceir. NIH image to ImageJ-5 years of image analysis. Nat. Methods 7:671–675, 2012.

    Google Scholar 

  43. Sheng, M., and M. Greenberg. The regulation and function of C-Fos and other immediate early genes in the nervous system. Neuron 477–485:1990, 1990.

    Google Scholar 

  44. Spalding, K. L., R. A. Rush, and A. R. Harvey. Target-derived and locally derived neurotrophins support retinal ganglion cell survival in the neonatal rat retina. J. Neurobiol. 60:319–327, 2004.

    CAS  PubMed  Google Scholar 

  45. Tagami, Y., T. Kurimoto, T. Miyoshi, T. Morimoto, H. Sawai, and O. Mimura. Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats. Jpn. J. Ophthalmol. 53:257–266, 2009.

    PubMed  Google Scholar 

  46. Wei, X., K. S. Cho, E. F. Thee, M. J. Jager, and D. F. Chen. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. J. Neurosci. Res. 97:70–76, 2019.

    CAS  PubMed  Google Scholar 

  47. Yin, H., H. Yin, W. Zhang, Q. Miao, Z. Qin, S. Guo, Q. Fu, J. Ma, F. Wu, J. Yin, Y. Yang, and X. Fang. Transcorneal electrical stimulation promotes survival of retinal ganglion cells after optic nerve transection in rats accompanied by reduced microglial activation and TNF-alpha expression. Brain Res. 1650:10–20, 2016.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Amelia McMullen, Colin Waltz, and Tyree Lewis for colony support, and Josephine Lepp, Lucy Coughlin, and Ryan Zubricky for technical assistance. This work was supported by NIH EY026662 (DMI). We also thank the generous support through the Margaret F. Donovan Endowed Chair for Women in Engineering at the University of Akron.

Author Contributions

Jassim, Cavanaugh, and Stukel, performed the experiments; Jassim and Cavanaugh undertook data analysis and writing. Willits and Inman conceived the experiments, supported data analysis, interpretation, and writing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rebecca Willits or Denise M. Inman.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jassim, A.H., Cavanaugh, M., Shah, J.S. et al. Transcorneal Electrical Stimulation Reduces Neurodegenerative Process in a Mouse Model of Glaucoma. Ann Biomed Eng 49, 858–870 (2021). https://doi.org/10.1007/s10439-020-02608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02608-8

Keywords

Navigation