Log in

Characterisation of Elastic and Acoustic Properties of an Agar-Based Tissue Mimicking Material

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

As a first step towards an acoustic localisation device for coronary stenosis to provide a non-invasive means of diagnosing arterial disease, measurements are reported for an agar-based tissue mimicking material (TMM) of the shear wave propagation velocity, attenuation and viscoelastic constants, together with one dimensional quasi-static elastic moduli and Poisson’s ratio. Phase velocity and attenuation coefficients, determined by generating and detecting shear waves piezo-electrically in the range 300 Hz–2 kHz, were 3.2–7.5 ms−1 and 320 dBm−1. Quasi-static Young’s modulus, shear modulus and Poisson’s ratio, obtained by compressive or shear loading of cylindrical specimens were 150–160 kPa; 54–56 kPa and 0.37–0.44. The dynamic Young’s and shear moduli, derived from fitting viscoelastic internal variables by an iterative statistical inverse solver to freely oscillating specimens were 230 and 33 kPa and the corresponding relaxation times, 0.046 and 0.036 s. The results were self-consistent, repeatable and provide baseline data required for the computational modelling of wave propagation in a phantom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. AIUM. Methods for specifying acoustic properties of tissue mimicking phantoms and objects, Stage I. Laurel, MD, American Institute of Ultrasound in Medicine Technical Standards Committee. 1995.

  2. Arnott, S., A. Fulmer, W. E. Scott, I. C. Dea, R. Moorhouse, and D. A. Rees. The agarose double helix and its function in agarose gel structure. J. Mol. Biol. 90(2):269–284, 1974.

    Article  CAS  PubMed  Google Scholar 

  3. Banks, H. T., S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald, and M. J. Birch. Material parameter estimation and hypothesis testing on a 1D viscoelastic stenosis model: methodology. J. Inverse Ill-posed Probl. 21(1):25–57, 2013.

    Article  Google Scholar 

  4. Banks, H. T., S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald, and M. J. Birch. Model validation for a noninvasive arterial stenosis detection problem mathematical biosciences and engineering. IJNME 11(3):427–448, 2014.

    Google Scholar 

  5. Brewin, M. P., L. C. Pike, D. E. Rowland, and M. J. Birch. The acoustic properties, centered on 20 MHz, of an agar-based tissue-mimicking material and its temperature, frequency and age dependence. Ultrasound Med. Biol. 34(8):1292–1306, 2008.

    Article  CAS  PubMed  Google Scholar 

  6. Brewin, M. P., P. D. Srodon, S. E. Greenwald, and M. J. Birch. Carotid atherosclerotic plaque characterisation by measurement of ultrasound sound speed in vitro at high frequency, 20 MHz. Ultrasonics 54(2):428–441, 2014.

    Article  CAS  PubMed  Google Scholar 

  7. Browne, J. E., K. V. Ramnarine, A. J. Watson, and P. R. Hoskins. Assessment of the acoustic properties of common tissue mimicking test phantoms. Ultrasound Med. Biol. 29(7):1053–1060, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Burlew, M. M., E. L. Madsen, J. A. Zagzebski, R. A. Banjavic, and S. W. Sum. A new ultrasound tissue-equivalent material. Radiology 134(2):517–520, 1980.

    Article  CAS  PubMed  Google Scholar 

  9. Catheline, S., J.-L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram, and J. Culioli. Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. J. Acoust. Soc. Am. 116(6):3734–3741, 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Catheline, S., L. Sandrin, J.-L. Gennisson, M. Tanter, and M. Fink. Ultrasound-based noninvasive shear elasticity probe for soft tissues. IEEE Ultrasonics Symp. 2:1799–1801, 2000.

    Google Scholar 

  11. Catheline, S., F. Wu, and M. Fink. A solution to diffraction biases in sonoelasticity: the acoustic impulse technique. J. Acoust. Soc. Am. 105(5):2941–2950, 1999.

    Article  CAS  PubMed  Google Scholar 

  12. Couade, M., M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound Med. Biol. 36(10):1662–1676, 2010.

    Article  PubMed  Google Scholar 

  13. Deffieux, T., G. Montaldo, and M. Fink. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity. IEEE Trans. Med. Imaging 28(3):313–322, 2009.

    Article  PubMed  Google Scholar 

  14. Dineley, J., S. Meagher, T. L. Poep**, W. N. McDicken, and P. R. Hoskins. Design and characterisation of a wall motion phantom. Ultrasound Med. Biol. 32(9):1349–1357, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Feng, K., and Z.-C. Shi. Mathematical Theory of Elastic Structures. New York: Springer, 1981.

    Google Scholar 

  16. Fromageau, J., E. Brusseau, and D. Vray. Characterization of PVA cryogel for intravascular ultrasound elasticity imaging. IEEE-UFFC 50(10):1318–1323, 2003.

    Article  Google Scholar 

  17. Gennisson, J.-L., and G. Cloutier. Sol–gel transition in agar-gelatin mixtures studied with transient elastography. IEEE-UFFC 53(4):716–723, 2006.

    Article  Google Scholar 

  18. Glagov, S. Intimal hyperplasia, vascular modeling, and the restenosis problem. Circulation 89(6):2888–2891, 1994.

    Article  CAS  PubMed  Google Scholar 

  19. Glozman, T., and H. Azhari. A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography. J. Ultrasound Med. 29(3):387–398, 2010.

    Article  PubMed  Google Scholar 

  20. Gray, D. E. American Institute of Physics Handbook (3rd ed.). New York: McGraw Hill, 1973.

    Google Scholar 

  21. Hadj Henni, A., C. Schmitt, M. É. Tremblay, M. Hamdine, M. C. Heuzey, P. Carreau, and G. Cloutier. Hyper-frequency viscoelastic spectroscopy of biomaterials. J. Mech. Behav. Biomed. Mater. 4(7):1115–1122, 2011.

  22. Klinkosz, T., C. J. Lewa, and J. Paczkowski. Propagation velocity and attenuation of a shear wave pulse measured by ultrasound detection in agarose and polyacrylamide gels. Ultrasound Med. Biol. 34(2):265–275, 2008.

    Article  PubMed  Google Scholar 

  23. Madsen, E. L., M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank. Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms. Phys. Med. Biol. 50(23):5597–5618, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Madsen, E. L., J. A. Zagzebski, R. A. Banjavic, and R. E. Jutila. Tissue mimicking materials for ultrasound phantoms. Med. Phys. 5(5):391–394, 1978.

    Article  CAS  PubMed  Google Scholar 

  25. Madsen, E. L., J. A. Zagzebski, and G. R. Frank. Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials. Ultrasound Med. Biol. 8(3):277–287, 1982.

    Article  CAS  PubMed  Google Scholar 

  26. Normand, V., D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard. New insight into agarose gel mechanical properties. Biomacromolecules 1(4):730–738, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Poep**, T. L., H. N. Nikolov, M. L. Thorne, and D. W. Holdsworth. A thin-walled carotid vessel phantom for Doppler ultrasound flow studies. Ultrasound Med. Biol. 30(8):1067–1078, 2004.

    Article  PubMed  Google Scholar 

  28. Ross, K. A., and M. G. Scanlon. Analysis of the elastic modulus of agar gel by indentation. J. Texture Stud. 30(1):17–27, 1999.

    Article  Google Scholar 

  29. Semmlow, J. L., and K. Rahalkar. Acoustic detection of coronary artery disease. Ann. Rev. Biomed. Eng. 9:449–469, 2007.

    Article  CAS  Google Scholar 

  30. Thrush, A. J., M. P. Brewin, and M. J. Birch. Assessment of tissue Doppler imaging measurements of arterial wall motion using a tissue mimicking test rig. Ultrasound Med. Biol. 34(3):446–453, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Engineering and Physical Sciences Research Council (EPSRC) [EP/H011072/1 and EP/H011285/1].

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Brewin.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brewin, M.P., Birch, M.J., Mehta, D.J. et al. Characterisation of Elastic and Acoustic Properties of an Agar-Based Tissue Mimicking Material. Ann Biomed Eng 43, 2587–2596 (2015). https://doi.org/10.1007/s10439-015-1294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1294-7

Keywords

Navigation