Log in

Evaluation of Goldmann Applanation Tonometry Using a Nonlinear Finite Element Ocular Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Goldmann applanation tonometry (GAT) is the internationally accepted standard for intra-ocular pressure (IOP) measurement, which is important for the diagnosis of glaucoma. The technique does not consider the effect of the natural variation in the corneal thickness, curvature and material properties. As these parameters affect the structural resistance of the cornea, their variation is expected to lead to inaccuracies in IOP determination. Numerical Analysis based on the finite element method has been used to simulate the loading conditions experienced in GAT and hence assess the effect of variation in corneal parameters on GAT IOP measurements. The analysis is highly nonlinear and considers the hyper-elastic J-shaped stress–strain properties of corneal tissue observed in laboratory tests. The results reveal a clear association between both the corneal thickness and material properties, and the measured IOP. Corneal curvature has a considerably lower effect. Similar trends have been found from analysis of clinical data involving 532 patients referred to the Glaucoma Unit at Moorfields Hospital, and from earlier mathematical analyses. Nonlinear modelling is shown to trace the behaviour of the cornea under both IOP and tonometric pressure, and to be able to provide additional, and potentially useful, information on the distribution of stress, strain, contact pressure and gap closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.

Similar content being viewed by others

Abbreviations

CCT:

central corneal thickness

GAT:

Goldmann applanation tonometry

IOP:

intra-ocular pressure

IOPG:

intra-ocular pressure as measured by GAT

IOPT:

true intra-ocular pressure

PCT:

peripheral corneal thickness

References

  1. Anderson K., A. Elsheikh, T. Newson (2004) Application of structural analysis to the mechanical behaviour of the cornea J. Roy. Soc. Interface 1: 1–13

    Article  Google Scholar 

  2. Bennett G., R. B. Rabbetts (1989) Clinical Visual Optics, vol. 2 Butterworths, London

    Google Scholar 

  3. Bryant M. R., P. J. McDonnell (1996) Constitutive laws for bio-mechanical modelling of refractive surgery J. Bio-Mech. Eng. 118: 473–481

    CAS  Google Scholar 

  4. Cho P., S. W. Cheung (2000) Central and peripheral corneal thickness measured with the TOPCON specular microscope SP-2000P Curr. Eye Res. 21(4): 799–807

    Article  PubMed  CAS  Google Scholar 

  5. Crisfield M. A. (1997) Non-linear Finite Element Analysis of Solids and Structures. Wiley, Chichester

    Google Scholar 

  6. Doughty M. J., M. L Zaman (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach Surv. Ophthalmol. 44(5):367–408

    Article  PubMed  CAS  Google Scholar 

  7. Doughty M. J., M. Laiquzzaman, A. Müller, E. Oblak, N. F. Button (2002) Central corneal thickness in European (white) individuals, especially children and the elderly, and assessment of its possible importance in clinical measures of intra-ocular pressure, Ophthal. Physiol. 22:491–504

    Article  Google Scholar 

  8. Dubbelman M., H. A. Weeber, R. G. L. Van Der Heijde, H. J. Völker-Dieben (2002) Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography Acta Ophthalmol. Scand. 80: 379–383

    Article  PubMed  Google Scholar 

  9. Ehlers N., T. Bramsen, S. Sperling (1975) Applanation tonometry and central corneal thickness Acta Ophthalmol. (Copenh) 53: 34–43

    Article  CAS  Google Scholar 

  10. Elsheikh, A. and D. Wang. Numerical modelling of corneal biomechanical behaviour. Comput. Methods Biomech. Biomed. Eng., in press

  11. Elsheikh A., K. Anderson (2005) Comparative study of corneal strip extensometry and inflation tests J. Roy. Soc. Interface 2: 177–185

    Article  Google Scholar 

  12. Feltgen N., D. Leifert, J. Funk (2001) Correlation between central corneal thickness, applanation tonometry and direct intracameral IOP readings Br. J. Ophthalmol. 85: 85–87

    Article  PubMed  CAS  Google Scholar 

  13. Foster A., G. J. Johnson (1990) Magnitude and causes of blindness in the develo** world Int. Ophthalmol. 14(3): 135–140

    Article  PubMed  CAS  Google Scholar 

  14. Foster P. J., J. Baasanhu, P. H. Alsbirk, D. Munkhbayar, D. Uranchimeg, G. J. Johnson (1998) Central corneal thickness and intraocular pressure in a Mongolian population Ophthalmology 105: 969–973

    Article  PubMed  CAS  Google Scholar 

  15. Foster P. J., D. Machin, T.-Y. Wong, T.-P. Ng, J. F. Kirwan, G. J. Johnson, P. T. Khaw, S. K. L. Seah (2003) Determinants of intraocular pressure and its association with glaucomatous optic neuropathy in Chinese Singaporeans: the Tanjong Pagar study Invest. Ophthalmol. Vision Sci. 44: 3885–3891

    Article  Google Scholar 

  16. Goldmann H., T. Schmidt (1957) Uber Applanationstonometrie Ophthalmologica 134: 221–242

    PubMed  CAS  Google Scholar 

  17. Goldmann H., T. H. Schmidt (1961) Weiterer beitrag zur applanationstonometrie Ophthalmologica 141: 441–456

    Article  PubMed  CAS  Google Scholar 

  18. Gunvant P., M. Baskaran, L. Vijaya, I. S. Joseph, R. J. Watkins, M. Nallapothula, D. C. Broadway, D. J. O’Leary (2004) Effect of corneal parameters on measurements using the pulsatile ocular blood flow tonograph and Goldmann applanation tonometer Br. J. Ophthalmol. 88: 518–522

    Article  PubMed  CAS  Google Scholar 

  19. Hanna K. D., F. E. Jouve, G. O. Waring, P. G. Ciarlet (1992) Computer simulation of acute keratotomy for astigmatism Refract. Corneal Surg. 8: 52–163

    Google Scholar 

  20. Hibbitt, Karlsson, Sorensen Inc. Abaqus: Standard Users Manual. Detroit, USA, 2001

  21. Hoeltzel D. A., P. Altman, K. Buzard, K.-I. Choe (1992) Choe Strip extensometry for comparison of the mechanical response of bovine, rabbit and human corneas Trans. ASME 114: 202–215

    CAS  Google Scholar 

  22. Kampmeier J., B. Radt, R. Birngruber, R. Brinkmann (2000) Thermal and biomechanical parameters of porcine cornea Cornea 19(3): 355–362

    Article  PubMed  CAS  Google Scholar 

  23. Kanngiesser, H. E., C. Inversini, and V. L. Ducry. Simulation of dynamic contour tonometry on a non-linear non-spherical eye model using finite element methods. ARVO 2005, Poster #1340

  24. Lam A. K. C., J. S. Chan (2003) Corneal thickness at different reference points from Orbscan II system Clin. Exp. Optom. 86(4): 230–234

    Article  PubMed  Google Scholar 

  25. Liu J., C. J. Roberts (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis J. Cataract. Refract. Surg. 31: 146–155

    Article  PubMed  Google Scholar 

  26. Nash I. S., P. R. Greene, C. S. Foster (1982) Comparison of mechanical properties of keratoconus and normal corneas Exp. Eye Res. 35: 413–42

    Article  PubMed  CAS  Google Scholar 

  27. Nooshin, H. and H. Tomatsuri. Diamatic transformations, International Symposium on Spatial Structures: Heritage, Present and Future, Milan, Italy, 1995, pp. 1–12

  28. Ogden, R. H. Non-linear Elastic Deformations. Prentice Hall, 1984

  29. Orssengo G. J., D. C. Pye (1999) Determination of the true intraocular pressure and modulus of elasticity of the Human cornea in vivo Bull. Math. Biol. 61: 551–572

    Article  PubMed  CAS  Google Scholar 

  30. Pinsky P. M., D. van der Heide, D. Chernyak (2005) Computational modeling of mechanical anisotropy in the cornea and sclera J. Cataract. Refract. Surg. 31: 136–145

    Article  PubMed  Google Scholar 

  31. Riks E. (1972) The application of Newton’s method to the problem of elastic stability J. Appl. Mech. 39: 1060–1066

    Google Scholar 

  32. Tonnu P.-A., T. Ho, T. Newson, A. Elsheikh, K. Sharma, E. White, C. Bunce, D. Garway-Heath (2005) The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the Tono-Pen XL and Goldmann applanation tonometry Br. J. Ophthalmol. 89: 851–854

    Article  PubMed  Google Scholar 

  33. Vito R. P., T. J. Shin, B. E. McCarey (1989) A mechanical model of the cornea: The effects of physiological, surgical factors on radial keratotomy surgery Refract. Corneal Surg. 5: 82–88

    PubMed  CAS  Google Scholar 

  34. Whitacre M. M., R. A. Stein, K. Hassanein (1993) The effect of corneal thickness on applanation tonometry Am. J. Ophthalmol. 115: 592–596

    PubMed  CAS  Google Scholar 

  35. Wolfs R. C., C. C. Klaver, J. R. Vingerling, D. E. Grobbee, A. Hofman, P. T. Jong (1997) Distribution of central corneal thickness and its association with intraocular pressure: the Rotterdam Study Am. J. Ophthalmol. 123: 767–772

    PubMed  CAS  Google Scholar 

  36. Zeng Y., J. Yang, K. Huang, Z. Lee, X. Lee (2001) A comparison of biomechanical properties between human and porcine cornea J. Biomech. 34: 533–537

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Elsheikh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsheikh, A., Wang, D., Kotecha, A. et al. Evaluation of Goldmann Applanation Tonometry Using a Nonlinear Finite Element Ocular Model. Ann Biomed Eng 34, 1628–1640 (2006). https://doi.org/10.1007/s10439-006-9191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9191-8

Keywords

Navigation