Log in

Non-Uniform Flow Behavior in a Parallel Plate Flow Chamber Alters Endothelial Cell Responses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Arterial flow characteristics determine vessel health by modulating vascular endothelial cells. One system used to study these interactions is the parallel plate flow chamber. The present in vitro study quantified the uniformity of fluid flow across a parallel plate flow chamber and characterized plate-location dependent endothelial cell gene expression. More specifically, shear stress varied by as much as 11% across the chamber area, which caused non-uniform ecNOS (p < 0.05) and COX-2 (p < 0.05) mRNA expression across the plate area. Results herein suggest that chamber variations may result during construction or assembly, which ultimately affect flow-sensitive cell responses (including mRNA expression). Therefore, these limitations should be considered when reporting endothelial cell responses to fluid flow using parallel plate flow chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbee, K. A., P. F. Davies, and R. Lal. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ. Res. 74:163–171, 1994.

    Google Scholar 

  2. Barbee, K. A. Role of subcellular shear-stress distributions in endothelial cell mechanotransduction. Ann. Biomed. Eng. 30:472–482, 2002.

    Google Scholar 

  3. Chung, B. J., A. M. Robertson, and D. G. Peters. The numerical design of a parallel plate flow chamber for investigation of endothelial cell response to shear stress. Comp. Structs. 81:535–546, 2003.

    Google Scholar 

  4. Davies, P. F., T. Mundel, and K. A. Barbee. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J. Biomechan. 28(12):1553–1560, 1995.

    Google Scholar 

  5. Devasenathipathy, S., J. G. Santiago, S. T. Wereley, and C. D. Meinhart. Particle imaging techniques for microfabricated fluidic systems. Exp. Fluids. 34(4):504–514, 2003.

    Google Scholar 

  6. Dieterich, P., M. Odenthal-Schnittler, C. Mrowietz, M. Kramer, L. Sasse, H. Oberleithner, and H. J. Schnittler. Quantitative morphodynamic of endothelial cells within confluent cultures in response to fluid shear stress. Biophys. J. 79:1285–1297, 2000.

    Article  Google Scholar 

  7. Dring, R. P. Sizing criteria for laser anemometry particles. J. Fluids Eng. 104(1):15–17, 1982.

    Article  Google Scholar 

  8. Frangos, J. A., L. V. McIntire, and S. G. Eskin. Shear stress stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32:1053–1060, 1988.

    Google Scholar 

  9. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.

    Google Scholar 

  10. Gomez, R., R. Bashir, A. Sarakaya, M. R. Ladisch, J. Sturgis, J. P. Robinson, T. Geng, A. K. Bhunia, H. L. Apple, and S. T. Wereley. Microfluidic biochip for impedance spectroscopy of biological species. Biomed. Microdev. 3:258–268, 2001.

    Google Scholar 

  11. Hirafuji, M., M. Tsunoda, T. Machida, N. Hamaue, T. Endo, A. Miyamoto, and M. Minami. Reduced expressions of inducible nitric oxide synthase and cyclooxygenase-2 in vascular smooth muscle cells of stroke-prone spontaneously hypertensive rats. Life Sci. 70:917–926, 2002.

    Google Scholar 

  12. Ignarro, L. J., G. M. Buga, L. H. Wei, P. M. Bauer, G. Wu, and P. del Soldato. Role of arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 98:4202–4208, 2001.

    Google Scholar 

  13. Imberti, B., M. Morigi, C. Zoja, S. Angioletti, M. Abbate, A. Remuzzi, and G. Remuzzi. Shear stress-induced cytoskeleton rearrangement mediates NF-κB-dependent endothelial expression of ICAM-1. Microvasc. Res. 60:182–188, 2000.

    Google Scholar 

  14. Lee, S. Y., S. T. Wereley, L. C. Gui, W. L. Qu, and I. Mudawar. Microchannel flow measurement using micro particle image velocimetry. Proc. ASME/IMECE. Paper #2002–33682, New Orleans, LA. 2002.

  15. Malek, A. M., S. L. Apler, and S. I. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Meinhart, C. D., S. T. Wereley, and J. G. Santiago. PIV measurements of a microchannel flow. Exp. Fluids. 27:414–419, 1999.

    Google Scholar 

  17. Meinhart, C. D., S. T. Wereley, and J. G. Santiago. Micron-Resolution Velocimetry Techniques. Laser Techniques Applied to Fluid Mechanics, edited by R. J. Adrian et al. Berlin: Springer-Verlag, 2000.

    Google Scholar 

  18. Nauman, E. A., K. J. Risic, T. M. Keaveny, and R. L. Satcher. Quantitative assessment of steady and pulsatile flow fields in a parallel plate flow chamber. Ann. Biomed. Eng. 27:194–199, 1999.

    Google Scholar 

  19. Nerem, R. M., P. R. Girard, G. Helmlinger, O. Thoumine, T. F. Wiesner, and T. Ziegler. Cell Mechanics and Cellular Engineering. edited by V. C. Mow, F. Guilak, R. Tran-Son-Tay, and R. M. Hochmuth. New York: Springer-Verlag, 1994, Chap. 5.

    Google Scholar 

  20. Raffel, M., C. Willert, and J. Kompenhans. Particle Image Velocimetry: A Practical Guide. Springer Press, Germany, 1998.

    Google Scholar 

  21. Resnick, N., H. Yahav, S. Schubert, E. Wolfovitz, and A. Shay. Signalling pathways in vascular endothelium activated by shear stress: Relevance to atherosclerosis. Curr. Opin. Lipidol. 11:167–177, 2000.

    Google Scholar 

  22. Ross, R. Endothelial Dysfunctions. New York: Plenum Press, 1992, Chapter 18.

    Google Scholar 

  23. Samimy, M. and S. K. Lele. Motion of particles with inertia in a compressible free shear flow. Phys. Fluids A 3:1915–1923, 1991.

    Google Scholar 

  24. Santiago, J. G., S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian. A particle image velocimetry system for microfluidics. Exp. Fluids. 25:316–319, 1998.

    Google Scholar 

  25. Tardy, Y., N. Resnick, T. Nagel, and M. A. Gimbrone Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 1997.

    Google Scholar 

  26. Timoshenko, S. Theory of Plates and Shells. NewYork: McGraw-Hill, 1940.

    MATH  Google Scholar 

  27. Topper, J. N. and M. A. Gimbrone Jr. Blood flow and vascular gene expression: Fluid shear stress as a modulator of endothelial cell phenotype. Mol. Med. Today 5:40–46, 1999.

    Google Scholar 

  28. Topper, J. N., J. Cai, D. Falb, and M. A. Gimbrone. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar flow. Proc. Natl. Acad. Sci. U.S.A. 93:10417–10422, 1996.

    Google Scholar 

  29. Traub, O. and B. C. Berk. Laminar shear stress mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.

    Google Scholar 

  30. Ukropec, J. A., M. K. Hollinger, and M. J. Woolkalis. Regulation of VE-cadherin linkage to the cytoskeleton in endothelial cells exposed to fluid shear stress. Exp. Cell Res. 273:240–247, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Haberstroh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCann, J.A., Peterson, S.D., Plesniak, M.W. et al. Non-Uniform Flow Behavior in a Parallel Plate Flow Chamber Alters Endothelial Cell Responses. Ann Biomed Eng 33, 328–336 (2005). https://doi.org/10.1007/s10439-005-1735-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1735-9

Keyword

Navigation