Log in

Modeling Reynolds stress anisotropy invariants via machine learning

基于机器学**的雷诺应力各向异性不变量建模

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The presentation and modeling of turbulence anisotropy are crucial for studying large-scale turbulence structures and constructing turbulence models. However, accurately capturing anisotropic Reynolds stresses often relies on expensive direct numerical simulations (DNS). Recently, a hot topic in data-driven turbulence modeling is how to acquire accurate Reynolds stresses by the Reynolds-averaged Navier-Stokes (RANS) simulation and a limited amount of data from DNS. Many existing studies use mean flow characteristics as the input features of machine learning models to predict high-fidelity Reynolds stresses, but these approaches still lack robust generalization capabilities. In this paper, a deep neural network (DNN) is employed to build a model, map** from tensor invariants of RANS mean flow features to the anisotropy invariants of high-fidelity Reynolds stresses. From the aspects of tensor analysis and input-output feature design, we try to enhance the generalization of the model while preserving invariance. A functional framework of Reynolds stress anisotropy invariants is derived theoretically. Complete irreducible invariants are then constructed from a tensor group, serving as alternative input features for DNN. Additionally, we propose a feature selection method based on the Fourier transform of periodic flows. The results demonstrate that the data-driven model achieves a high level of accuracy in predicting turbulence anisotropy of flows over periodic hills and converging-diverging channels. Moreover, the well-trained model exhibits strong generalization capabilities concerning various shapes and higher Reynolds numbers. This approach can also provide valuable insights for feature selection and data generation for data-driven turbulence models.

摘要

湍流各向异性的表示和建模对于研究大尺度湍流结构和建立湍流模型至关重要. 然而, 准确计算雷诺应力的各向异性往往需要昂贵的直接数值模拟(DNS). **年来, 数据驱动湍流建模的一个热点是如何利用雷诺**均模拟方法(RANS)的数据和少量的DNS数据建立高精度的雷诺应力模型. 许多现有的研究实现了从**均流场特征到高精度的雷诺应力的预测模型, 但这些方法仍然缺乏**泛化能力. 本文采用深度神经网络(DNN), 以RANS的张量不变量作为输入映射高精度雷诺应力的各向异性不变量. 从张量分析和特征设计两方面, 在保持模型不变性的同时增**模型的泛化能力. 从理论上推导了雷诺应力各向异性不变量的泛函框架. 然后构造了完备不可约的 不变量, 作为DNN的备选输入特征. 此外, 我们提出了一种基于周期流动傅里叶变换的特征选择方法. 结果表明, 数据驱动模型在预测周期性流动和收缩扩张管道流动的湍流各向异性方面具有较高的精度, 而且训练的模型对外形和雷诺数具有很**的泛化能力. 本文的方法还可以为数据驱动湍流建模的特征选择和数据生成提供新的解决思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Data availability

The data that support the findings of this study are openly available in Kaggle at https://doi.org/10.34740/kaggle/dsv/2637500, Ref. [51], and within Refs. [36,46–49].

References

  1. L. Biferale, and I. Procaccia, Anisotropy in turbulent flows and in turbulent transport, Phys. Rep. 414, 43 (2005).

    Article  MathSciNet  Google Scholar 

  2. J. L. Lumley, Computational modeling of turbulent flows, Adv. Appl. Mech. 18, 123 (1979).

    Article  Google Scholar 

  3. J. L. Lumley, and G. R. Newman, The return to isotropy of homogeneous turbulence, J. Fluid Mech. 82, 161 (1977).

    Article  MathSciNet  Google Scholar 

  4. K.-S. Choi, A study of the return to isotropy of homogeneous turbulence (Cornell University, Ithaca, 1983).

    Google Scholar 

  5. K. S. Choi, and J. L. Lumley, The return to isotropy of homogeneous turbulence, J. Fluid Mech. 436, 59 (2001).

    Article  Google Scholar 

  6. L. Terentiev, The turbulence closure model based on linear anisotropy invariant analysis, Dissertation for the Doctoral Degree (Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 2006).

    Google Scholar 

  7. S. Banerjee, R. Krahl, F. Durst, and C. Zenger, Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches, J. Turbul. 8, 1 (2007).

    Article  MathSciNet  Google Scholar 

  8. P. Å. Krogstad, and L. E. Torbergsen, Invariant analysis of turbulent pipe flow, Flow Turbul. Combust. 64, 161 (2000).

    Article  Google Scholar 

  9. R. A. Antonia, L. W. B. Browne, and J. Kim, Some characteristics of small-scale turbulence in a turbulent duct flow, J. Fluid Mech. 233, 369 (1991).

    Article  Google Scholar 

  10. J. Jovanovic, The Statistical Dynamics of Turbulence (Springer, Berlin, Heidelberg, 2004).

    Book  Google Scholar 

  11. L. Neuhaus, P. Gilge, J. Seume, and K. Mulleners, in Influence of surface roughness on the turbulent properties in the wake of a turbine blade: Proceedings of the 18th International Symposium on the Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, 2016, p. 4.

  12. M. Andersson, and M. Karlsson, Characterization of anisotropic turbulence behavior in pulsatile blood flow, Biomech Model Mechan. 20, 491 (2021).

    Article  Google Scholar 

  13. J. X. Wang, J. L. Wu, and H. **ao, Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data, Phys. Rev. Fluids 2, 034603 (2017).

    Article  Google Scholar 

  14. J. P. Li, D. G. Tang, C. Yi, and C. Yan, Data-augmented turbulence modeling by reconstructing Reynolds stress discrepancies for adverse-pressure-gradient flows, Phys. Fluids 34, 045110 (2022).

    Article  Google Scholar 

  15. M. Emory, J. Larsson, and G. Iaccarino, Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures, Phys. Fluids 25, 110822 (2013).

    Article  Google Scholar 

  16. C. Gorlé, and G. Iaccarino, A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations, Phys. Fluids 25, 055105 (2013).

    Article  Google Scholar 

  17. M. Emory, and G. Iaccarino, Componentality-based wall-blocking for RANS models, Center for Turbulence Research Annual Research Briefs (CTR, Palo Alto, 2014), p. 193.

    Google Scholar 

  18. M. A. Emory, Estimating model-form uncertainty in Reynolds-averaged navier-stokes closures, Dissertation for the Doctoral Degree (Stanford University, Palo Alto, 2014).

    Google Scholar 

  19. K. Duraisamy, G. Iaccarino, and H. **ao, Turbulence modeling in the age of data, Annu. Rev. Fluid Mech. 51, 357 (2019).

    Article  MathSciNet  Google Scholar 

  20. K. Duraisamy, Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence, Phys. Rev. Fluids 6, 050504 (2021).

    Article  Google Scholar 

  21. A. P. Singh, S. Medida, and K. Duraisamy, Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils, AIAA J. 55, 2215 (2017).

    Article  Google Scholar 

  22. C. Wu, and Y. Zhang, Enhancing the shear-stress-transport turbulence model with symbolic regression: A generalizable and interpretable data-driven approach, Phys. Rev. Fluids 8, 084604 (2023).

    Article  Google Scholar 

  23. X. L. Shan, Y. L. Liu, W. B. Cao, X. X. Sun, and W. W. Zhang, Turbulence modeling via data assimilation and machine learning for separated flows over airfoils, AIAA J. 61, 3883 (2023).

    Article  Google Scholar 

  24. Z. Wang, and W. Zhang, A unified method of data assimilation and turbulence modeling for separated flows at high Reynolds numbers, Phys. Fluids 35, 025124 (2023).

    Article  Google Scholar 

  25. L. Zhu, T. Wang, Z. Fan, X. **ang, W. Zhang, and X. Yuan, Physics-assisted recursive method for sample selection from wall-bounded turbulence data, Phys. Fluids 34, 085132 (2022).

    Article  Google Scholar 

  26. L. Zhu, X. Sun, Y. Liu, and W. Zhang, One neural network approach for the surrogate turbulence model in transonic flows, Acta Mech. Sin. 38, 321187 (2022).

    Article  Google Scholar 

  27. L. Hou, B. Zhu, and Y. Wang, kεNet: Discovering the turbulence model and applying for low Reynolds number turbulent channel flow, Acta Mech. Sin. 39, 322326 (2023).

    Article  MathSciNet  Google Scholar 

  28. L. Zhu, W. Zhang, and G. Tu, Generalization enhancement of artificial neural network for turbulence closure by feature selection, Adv. Aerodyn. 4, 1 (2022).

    Article  Google Scholar 

  29. J. P. Panda, and H. V. Warrior, Evaluation of machine learning algorithms for predictive Reynolds stress transport modeling, Acta Mech. Sin. 38, 321544 (2022).

    Article  MathSciNet  Google Scholar 

  30. H. **e, Y. Zhao, and Y. Zhang, Data-driven nonlinear K-L turbulent mixing model via gene expression programming method, Acta Mech. Sin. 39, 322315 (2023).

    Article  MathSciNet  Google Scholar 

  31. Y. Yin, Z. Shen, Y. Zhang, H. Chen, and S. Fu, An iterative data-driven turbulence modeling framework based on Reynolds stress representation, Theor. Appl. Mech. Lett. 12, 100381 (2022).

    Article  Google Scholar 

  32. U. Schumann, Realizability of Reynolds-stress turbulence models, Phys. Fluids 20, 721 (1977).

    Article  Google Scholar 

  33. A. J. Simonsen, and P. Å. Krogstad, Turbulent stress invariant analysis: Clarification of existing terminology, Phys. Fluids 17, 088103 (2005).

    Article  Google Scholar 

  34. S. Banerjee, O. Ertunc, and F. Durst, in Anisotropy properties of turbulence: Proceedings of the 13th WSEAS International Conference on Applied Mathematics, Wisconsin, 2008, pp. 26–57.

  35. M. Emory, and G. Iaccarino, Visualizing turbulence anisotropy in the spatial domain with componentality contours, Center for Turbulence Research Annual Research Briefs (CTR, Palo Alto, 2014), p. 123.

    Google Scholar 

  36. H. **ao, J. L. Wu, S. Laizet, and L. Duan, Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations, Comput. Fluids 200, 104431 (2020).

    Article  MathSciNet  Google Scholar 

  37. S. B. Pope, A more general effective-viscosity hypothesis, J. Fluid Mech. 72, 331 (1975).

    Article  Google Scholar 

  38. C. G. Speziale, S. Sarkar, and T. B. Gatski, Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach, J. Fluid Mech. 227, 245 (1991).

    Article  Google Scholar 

  39. C. G. Speziale, and T. B. Gatski, Analysis and modelling of anisotropies in the dissipation rate of turbulence, J. Fluid Mech. 344, 155 (1997).

    Article  MathSciNet  Google Scholar 

  40. M. Frewer, More clarity on the concept of material frame-indifference in classical continuum mechanics, Acta Mech 202, 213 (2009).

    Article  Google Scholar 

  41. M. Itskov, Tensor Algebra and Tensor Analysis for Engineers (Springer, Cham, 2007).

    Google Scholar 

  42. J. L. Wu, H. **ao, and E. Paterson, Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework, Phys. Rev. Fluids 3, 074602 (2018).

    Article  Google Scholar 

  43. E. L. Peters, R. Balin, K. E. Jansen, A. Doostan, and J. A. Evans, S-frame discrepancy correction models for data-informed Reynolds stress closure, J. Comput. Phys. 448, 110717 (2022).

    Article  MathSciNet  Google Scholar 

  44. A. J. M. Spencer, and R. S. Rivlin, Isotropic integrity bases for vectors and second-order tensors, Arch. Rational Mech. Anal. 9, 45 (1962).

    Article  MathSciNet  Google Scholar 

  45. X. Wang, J. Kou, W. Zhang, and Z. Liu, Incorporating physical models for dynamic stall prediction based on machine learning, AIAA J. 60, 4428 (2022).

    Article  Google Scholar 

  46. R. McConkey, E. Yee, and F. S. Lien, A curated dataset for data-driven turbulence modelling, Sci. Data 8, 255 (2021).

    Article  Google Scholar 

  47. M. Marquillie, J.-P. Laval, and R. Dolganov, Direct numerical simulation of a separated channel flow with a smooth profile, J. Turbul. 9, N1 (2008).

    Article  Google Scholar 

  48. J.-P. Laval, and M. Marquillie, Direct numerical simulations of converging-diverging channel flow, in: Progress in Wall Turbulence: Understanding and Modeling (Springer, Dordrecht, 2009), pp. 203–209.

    Google Scholar 

  49. L. A. C. A. Schiavo, A. B. Jesus, J. L. F. Azevedo, and W. R. Wolf, Large Eddy Simulations of convergent-divergent channel flows at moderate Reynolds numbers, Int. J. Heat Fluid Flow 56, 137 (2015).

    Article  Google Scholar 

  50. K. E. Taylor, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res. 106, 7183 (2001).

    Article  Google Scholar 

  51. R. McConkey, E. Yee, and F. S. Lien, A curated dataset for data-driven turbulence modeling, Sci. Data 8, 255 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 92152301).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Weiwei Zhang and **anglin Shan designed the research. Weiwei Zhang acquired the financial support for the project leading to this publication. **anglin Shan investigated the methodology, designed the computational framework, constructed the model, and wrote the manuscript. Xuxiang Sun and Wenbo Cao help to formulate overarching research goals and analyze the results. Zhenhua **a and Weiwei Zhang helped organize the manuscript, revised, and edited the final version.

Corresponding author

Correspondence to Weiwei Zhang  (张伟伟).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, X., Sun, X., Cao, W. et al. Modeling Reynolds stress anisotropy invariants via machine learning. Acta Mech. Sin. 40, 323629 (2024). https://doi.org/10.1007/s10409-024-23629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-024-23629-x

Navigation