Log in

New meteoroid entry method with a deformable non-spherical N-body model

流星进入的可变形不规则离散元分析方法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Meteoroid disintegration in the atmosphere can produce airbursts that pose regional/global threats to the Earth. Precise dynamical simulation of hypersonic meteoroids is necessary for human safety. An analysis model that includes spatial structures and non-uniform ablation is needed to understand the evolution of meteoroids and provide inference for the deviation of fragments. This paper proposes a new meteoroid entry method to simulate their trajectory, attitude, ablation, fragmentation, and detonation. N-body configurations of deformable polyhedral granules that can alter the structures of heterogeneous meteoroids are introduced. By manipulating the polyhedron vertices, the rugged surfaces of the meteoroid and the volume change under ablation are described quantitatively. The pressure of the concentrated detonation products is modeled using the Jones-Wilkins-Lee equation of state. To verify the effectiveness of the new method, the expansion of the concentrated detonation products is numerically simulated for the Chelyabinsk meteoroid. Different detonation cases are obtained and presented to demonstrate the laterally/vertically-ejected fragments. Characteristics of both the fragments’ trajectories and the remained terminal masses satisfy the observed results well.

摘要

流星进入地球大气层时会发生空中解体和爆炸, 威胁地球局部区域乃至全球安全. 针对流星进入大气演化的超高速动力学仿真研究具有重要意义. 为提高预报的精确性, 应关注流星体内部结构和非均匀烧蚀等对演化过程和解体后碎片运动的影响. 本文提出了一种可变形不规则离散元方法, 用于仿真分析流星进入大气层时轨迹和姿态变化、 烧蚀、 解体和爆轰等现象. 利用多面体离散元模型可模拟不同结构的异质流星; 通过拉伸多面体模型顶点, 仿真流星的粗糙外形和烧蚀形变; 利用Jones-Wilkins-Lee状态方程计算烧蚀产生的集中爆轰产物的压力. 以Chelyabinsk流星事件中发生轨迹偏离的碎片为例, 数值仿真集中爆轰产物的膨胀驱动作用对碎片运动方向和轨迹演化的影响. 仿真结果表明, 碎片弹出轨迹特征和烧蚀剩余质量均在观测值范围内, 验证了新方法的有效性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. B. Gladman, The near-earth object population, Icarus 146, 176 (2000).

    Article  ADS  Google Scholar 

  2. Y. Zhang, and P. Michel, Shapes, structures, and evolution of small bodies, Astrodynamics 5, 293 (2021).

    Article  ADS  Google Scholar 

  3. D. Perna, M. A. Barucci, and M. Fulchignoni, The near-Earth objects and their potential threat to our planet, Astron. Astrophys. Rev. 21, 65 (2013).

    Article  ADS  Google Scholar 

  4. A. W. Harris, M. Boslough, C. R. Chapman, L. Drube, P. Michel, and A. W. Harris, Asteroid impacts and modern civilization: Can we prevent a catastrophe? In: Asteroids IV (University of Arizona Press, Tucson, 2015), pp. 835–854.

    Google Scholar 

  5. Z. Gong, M. Li, C. Chen, and C. Zhao, The frontier science and key technologies of asteroid monitoring and early warning, security defense and resource utilization, Chin. Sci. Bull. 65, 346 (2020).

    Article  Google Scholar 

  6. V. A. Bronshten, Physics of Meteoric Phenomena (Springer, Netherlands, 1983).

    Book  Google Scholar 

  7. S. Greenstreet, H. Ngo, and B. Gladman, The orbital distribution of near-Earth objects inside Earth’s orbit, Icarus 217, 355 (2012).

    Article  ADS  Google Scholar 

  8. D. A. Kring, and M. Boslough, Chelyabinsk: Portrait of an asteroid airburst, Phys. Today 67, 32 (2014).

    Article  Google Scholar 

  9. O. Popova, J. Borovička, W. K. Hartmann, P. Spurný, E. Gnos, I. Nemtchinov, and J. M. Trigo-rodríguez, Very low strengths of interplanetary meteoroids and small asteroids, Meteoritics Planet. Sci. 46, 1525 (2011).

    Article  ADS  Google Scholar 

  10. J. Borovička, Are some meteoroids rubble piles? Proc. IAU 10, 80 (2015).

    Article  Google Scholar 

  11. J. Borovicka, Physical and chemical properties of meteoroids as deduced from observations, Proc. IAU 1, 249 (2005).

    Article  Google Scholar 

  12. J. Borovička, Properties of meteoroids from different classes of parent bodies, Proc. IAU 2, 107 (2006).

    Article  Google Scholar 

  13. P. Brown, R. E. Spalding, D. O. ReVelle, E. Tagliaferri, and S. P. Worden, The flux of small near-Earth objects colliding with the Earth, Nature 420, 294 (2002).

    Article  ADS  Google Scholar 

  14. S. McMullan, and G. S. Collins, Uncertainty quantification in continuous fragmentation airburst models, Icarus 327, 19 (2019).

    Article  ADS  Google Scholar 

  15. C. F. Chyba, P. J. Thomas, and K. J. Zahnle, The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid, Nature 361, 40 (1993).

    Article  ADS  Google Scholar 

  16. P. G. Brown, J. D. Assink, L. Astiz, R. Blaauw, M. B. Boslough, J. Borovička, N. Brachet, D. Brown, M. Campbell-Brown, L. Ceranna, W. Cooke, C. de Groot-Hedlin, D. P. Drob, W. Edwards, L. G. Evers, M. Garces, J. Gill, M. Hedlin, A. Kingery, G. Laske, A. Le Pichon, P. Mialle, D. E. Moser, A. Saffer, E. Silber, P. Smets, R. E. Spalding, P. Spurný, E. Tagliaferri, D. Uren, R. J. Weryk, R. Whitaker, and Z. Krzeminski, A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors, Nature 503, 238 (2013).

    Article  ADS  Google Scholar 

  17. D. W. Dunham, H. J. Reitsema, E. Lu, R. Arentz, R. Linfield, C. Chapman, R. Farquhar, A. A. Ledkov, N. A. Eismont, and E. Chumachenko, A concept for providing warning of earth impacts by small asteroids, Sol. Syst. Res. 47, 315 (2013).

    Article  ADS  Google Scholar 

  18. N. A. Artemieva, and V. V. Shuvalov, From tunguska to chelyabinsk via jupiter, Annu. Rev. Earth Planet. Sci. 44, 37 (2016).

    Article  ADS  Google Scholar 

  19. D. K. Robertson, and D. L. Mathias, Effect of yield curves and porous crush on hydrocode simulations of asteroid airburst, J. Geophys. Res. Planets 122, 599 (2017).

    Article  ADS  Google Scholar 

  20. P. J. Register, M. J. Aftosmis, E. C. Stern, J. M. Brock, P. M. Seltner, S. Willems, A. Guelhan, and D. L. Mathias, Interactions between asteroid fragments during atmospheric entry, Icarus 337, 113468 (2020).

    Article  Google Scholar 

  21. N. A. Artem’eva, and V. V. Shuvalov, Interaction of shock waves during the passage of a disrupted meteoroid through the atmosphere, Shock Waves 5, 359 (1996).

    Article  ADS  Google Scholar 

  22. L. F. Wheeler, P. J. Register, and D. L. Mathias, A fragment-cloud model for asteroid breakup and atmospheric energy deposition, Icarus 295, 149 (2017).

    Article  ADS  Google Scholar 

  23. S. J. Laurence, and R. Deiterding, Shock-wave surfing, J. Fluid Mech. 676, 396 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  24. P. Jenniskens, D. Robertson, C. A. Goodrich, M. H. Shaddad, A. Kudoda, A. M. Fioretti, and M. E. Zolensky, Bolide fragmentation: What parts of asteroid 2008 TC3 survived to the ground? Meteorit Planet. Scien 57, 1641 (2022).

    Article  ADS  Google Scholar 

  25. J. G. Hills, and M. P. Goda, The fragmentation of small asteroids in the atmosphere, Astron. J. 105, 1114 (1993).

    Article  ADS  Google Scholar 

  26. B. Baldwin, and Y. Sheaffer, Ablation and breakup of large meteoroids during atmospheric entry, J. Geophys. Res. 76, 4653 (1971).

    Article  ADS  Google Scholar 

  27. D. O. Revelle, Recent advances in bolide entry modeling: A bolide potpourri, Earth Moon Planet. 95, 441 (2006).

    Article  ADS  Google Scholar 

  28. P. J. Register, D. L. Mathias, and L. F. Wheeler, Asteroid fragmentation approaches for modeling atmospheric energy deposition, Icarus 284, 157 (2017).

    Article  ADS  Google Scholar 

  29. L. F. Wheeler, D. L. Mathias, E. Stokan, and P. G. Brown, Atmospheric energy deposition modeling and inference for varied meteoroid structures, Icarus 315, 79 (2018).

    Article  ADS  Google Scholar 

  30. J. Li, T. Qiao, and S. Ji, General polygon mesh discrete element method for arbitrarily shaped particles and complex structures based on an energy-conserving contact model, Acta Mech. Sin. 39, 722245 (2023).

    Article  MathSciNet  Google Scholar 

  31. T. Wen, X. Zeng, C. Circi, and Y. Gao, Hop reachable domain on irregularly shaped asteroids, J. Guidance Control Dyn. 43, 1269 (2020).

    Article  ADS  Google Scholar 

  32. X. Zeng, T. Wen, Z. Li, and K. T. Alfriend, Natural landing simulations on generated local rocky terrains for asteroid cubic lander, IEEE Trans. Aerosp. Electron. Syst. 58, 3492 (2022).

    Article  ADS  Google Scholar 

  33. X. Zeng, Z. Li, Q. Gan, and C. Circi, Numerical study on low-velocity impact between asteroid lander and deformable regolith, J. Guidance Control Dyn. 45, 1644 (2022).

    Article  ADS  Google Scholar 

  34. J. Borovička, P. Spurný, P. Brown, P. Wiegert, P. Kalenda, D. Clark, and L. Shrbený, The trajectory, structure and origin of the Chelyabinsk asteroidal impactor, Nature 503, 235 (2013).

    Article  ADS  Google Scholar 

  35. E. J. Öpik, and S. F. Singer, Physics of Meteor Flight in the Atmosphere, Phys. Today 12, 54 (1959).

    Article  Google Scholar 

  36. R. A. Jarvis, On the identification of the convex hull of a finite set of points in the plane, Inf. Process. Lett. 2, 18 (1973).

    Article  Google Scholar 

  37. Y. Zhang, J. Li, X. Zeng, T. Wen, and Z. Li, High-fidelity landing simulation of small body landers: Modeling and mass distribution effects on bouncing motion, Aerosp. Sci. Tech. 119, 107149 (2021).

    Article  Google Scholar 

  38. H. S. Tsien, Superaerodynamics, mechanics of rarefied gases, J. Aeronaut. Sci. 13, 653 (1946).

    Article  Google Scholar 

  39. W. Steckelmacher, Molecular gas dynamics and the direct simulation of gas flows, Vacuum 47, 1140 (1996).

    ADS  Google Scholar 

  40. L. Lees, Hypersonic flow, J. Spacecraft Rockets 40, 700 (2003).

    Article  ADS  Google Scholar 

  41. R. G. Wilmoth, R. A. Mitcheltree, and J. N. Moss, Low-density aerodynamics of the stardust sample return capsule, J. Spacecraft Rockets 36, 436 (1999).

    Article  ADS  Google Scholar 

  42. A. Tewari, Entry trajectory model with thermomechanical breakup, J. Spacecraft Rockets 46, 299 (2009).

    Article  ADS  Google Scholar 

  43. J. Borovička, P. Spurný, and P. Koten, Atmospheric deceleration and light curves of Draconid meteors and implications for the structure of cometary dust, Astron. Astrophys. 473, 661 (2007).

    Article  ADS  Google Scholar 

  44. Z. Ceplecha, J. Í. Borovička, W. G. Elford, D. O. ReVelle, R. L. Hawkes, V. Í. Porubčan, and M. Šimek, Meteor phenomena and bodies, Space Sci. Rev. 84, 327 (1998).

    Article  ADS  Google Scholar 

  45. Q. R. Passey, and H. J. Melosh, Effects of atmospheric breakup on crater field formation, Icarus 42, 211 (1980).

    Article  ADS  Google Scholar 

  46. W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech. 18, 293 (1951).

    Article  ADS  Google Scholar 

  47. N. A. Artemieva, and V. V. Shuvalov, Motion of a fragmented meteoroid through the planetary atmosphere, J. Geophys. Res. 106, 3297 (2001).

    Article  ADS  Google Scholar 

  48. O. G. Gladysheva, Meteorite chelyabinsk: Features of destruction, Natural Sci. 10, 430 (2018).

    Article  Google Scholar 

  49. P. A. Urtiew, and B. Hayes, Parametric study of the dynamic JWL-EOS for detonation products, Combust. Explos. Shock Waves 27, 505 (1991).

    Article  Google Scholar 

  50. I. F. Lan, S. C. Hung, C. Y. Chen, Y. M. Niu, and J. H. Shiuan, An improved simple method of deducing JWL parameters from cylinder expansion test, Propellants Explos. Pyrotech. 18, 18 (1993).

    Article  Google Scholar 

  51. B. M. Dobratz, Properties of chemical explosives and explosive simulants, Technical Report (Livermore, 1972).

  52. P. Sánchez, M. Renouf, E. Azéma, R. Mozul, and F. Dubois, A contact dynamics code implementation for the simulation of asteroid evolution and regolith in the asteroid environment, Icarus 363, 114441 (2021).

    Article  Google Scholar 

  53. Z. Li, X. Zeng, T. Wen, and Y. Zhang, Numerical comparison of contact force models in the discrete element method, Aerospace 9, 737 (2022).

    Article  Google Scholar 

  54. J. Boroviĉka, and P. Kalenda, The Morávka meteorite fall: 4. Meteoroid dynamics and fragmentation in the atmosphere, Meteorit. Planet. Sci. 38, 1023 (2003).

    Article  ADS  Google Scholar 

  55. M. Beech, P. Brown, R. L. Hawkes, Z. Ceplecha, K. Mossman, and G. Wetherill, The fall of the Peekskill meteorite: Video observations, atmospheric path, fragmentation record and orbit., Earth Moon Planet 68, 189 (1995).

    Article  ADS  Google Scholar 

  56. J. A. Docobo, and Z. Ceplecha, Video record (CD copy attached) of the Spain bolide of June 14, 1996: The atmospheric trajectory and orbit, Astron. Astrophys. Suppl. Ser. 138, 1 (1999).

    Article  ADS  Google Scholar 

  57. S. J. Laurence, N. J. Parziale, and R. Deiterding, Dynamical separation of spherical bodies in supersonic flow, J. Fluid Mech. 713, 159 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  58. T. J. Whalen, S. J. Laurence, and R. Deiterding, in A numerical investigation of clustered spheres separating in Mach 20 flow: Proceedings of AIAA Aviation 2020 Forum, Reston, 2020.

  59. K. Yomogida, and T. Matsui, Physical properties of ordinary chondrites, J. Geophys. Res. 88, 9513 (1983).

    Article  ADS  Google Scholar 

  60. C. E. Moyano-Cambero, E. Pellicer, J. M. Trigo-Rodríguez, I. P. Williams, J. Blum, P. Michel, M. Küppers, M. Martínez-Jiménez, I. Lloro, and J. Sort, Nanoindenting the chelyabinsk meteorite to learn about impact deflection effects in asteroids, Astrophys. J. 835, 157 (2017).

    Article  ADS  Google Scholar 

  61. B. Cheng, Y. Yu, and H. Baoyin, Collision-based understanding of the force law in granular impact dynamics, Phys. Rev. E 98, 012901 (2018).

    Article  ADS  Google Scholar 

  62. K. Amin, J. M. Huang, K. J. Hu, J. Zhang, and L. Ristroph, The role of shape-dependent flight stability in the origin of oriented meteorites, Proc. Natl. Acad. Sci. USA 116, 16180 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12222202 and 11972075), and the Innovative Program from Bei**g Institute of Technology (Grant No. 2021CX01029).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ziwen Li, **angyuan Zeng, and Chengfan Feng were in charge of the conceptualization and methodology. Ziwen Li and Tongge Wen contributed to the software. Ziwen Li was in charge of the investigation, validation, formal analysis, and visualization. Ziwen Li wrote the first draft of the manuscript. **angyuan Zeng and Kyle T. Alfriend reviewed and edited the final version. **angyuan Zeng was responsible for the supervision.

Corresponding author

Correspondence to **angyuan Zeng  (曾祥远).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zeng, X., Alfriend, K.T. et al. New meteoroid entry method with a deformable non-spherical N-body model. Acta Mech. Sin. 40, 523142 (2024). https://doi.org/10.1007/s10409-023-23142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23142-x

Navigation