Log in

Topological materials for elastic wave in continuum

连续介质中的弹性波拓扑材料

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Elastic wave has wide applications, such as signal processing, sensor, and communication. It is highly desired to control the propagation of elastic wave efficiently. Inspired by various topological phenomena in electronic systems, robust transports of elastic wave have attracted much attention. In this paper, we review the recent progress on elastic wave topologies, including elastic quantum spin Hall effect, valley Hall effect, Weyl semimetal, higher-order topology, and other topological effects. Finally, we give some brief outlooks on elastic wave topologies. Three-dimensional topological materials and non-Hermitian physics for elastic waves are yet to be explored. Due to the strong intrinsic nonlinearity, it is an ideal platform to investigate nonlinear properties in nanomechanical structures. In addition to passive materials, active materials may be introduced to realize tunable multifunctionalities. Topological elastic materials have promising prospects in device applications.

摘要

弹性波具有广泛的应用, 如信号处理、传感和通信等. 高效地控制弹性波的传播具有重要的应用价值. 受到电子体系中各种拓扑现象的启发, 弹性波拓扑态及其鲁棒性传输引起了人们的广泛关注. 本文综述了**年来弹性波拓扑的最新研究进展, 包括弹性波量子自旋霍尔效应、能谷霍尔效应、外尔半金属、高阶拓扑态, 以及其他拓扑效应. 最后, 我们对弹性波拓扑效应的研究作了简要的展望: 三维弹性波拓扑材料及其丰富拓扑输运现象还有待实验验证; 弹性波体系中的非厄米拓扑物理研究还需要进一步的探索; 由于微纳结构材料具有很**的非线性响应, 弹性波是研究拓扑非线性特性的理想**台; 除了被动单元, 主动单元的引入有望实现可调控的多功能弹性波器件.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Z. Hasan, and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).

    Article  Google Scholar 

  2. X. L. Qi, and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).

    Article  Google Scholar 

  3. K. V. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance, Phys. Rev. Lett. 45, 494 (1980).

    Article  Google Scholar 

  4. R. E. Prange, and S. M. Girvin, The Quantum Hall Effect (Springer, New York, 2012).

    Google Scholar 

  5. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49, 405 (1982).

    Article  Google Scholar 

  6. Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett. 71, 3697 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. **ao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88, 035005 (2016).

    Article  Google Scholar 

  9. B. J. Wieder, B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, L. Elcoro, A. A. Soluyanov, C. Felser, T. Neupert, N. Regnault, and B. A. Bernevig, Topological materials discovery from crystal symmetry, Nat. Rev. Mater. 7, 196 (2022).

    Article  Google Scholar 

  10. F. D. M. Haldane, Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61, 2015 (1988).

    Article  MathSciNet  Google Scholar 

  11. C. L. Kane, and E. J. Mele, Z2 topological order and the quantum spin hall effect, Phys. Rev. Lett. 95, 146802 (2005).

    Article  Google Scholar 

  12. C. L. Kane, and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005).

    Article  Google Scholar 

  13. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells, Science 314, 1757 (2006).

    Article  Google Scholar 

  14. J. E. Moore, and L. Balents, Topological invariants of time-reversal-invariant band structures, Phys. Rev. B 75, 121306 (2007).

    Article  Google Scholar 

  15. R. Roy, Topological phases and the quantum spin Hall effect in three dimensions, Phys. Rev. B 79, 195322 (2009).

    Article  Google Scholar 

  16. J. E. Moore, The birth of topological insulators, Nature 464, 194 (2010).

    Article  Google Scholar 

  17. Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82, 102001 (2013).

    Article  Google Scholar 

  18. L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106, 106802 (2011).

    Article  Google Scholar 

  19. Y. Ando, and L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys. 6, 361 (2015).

    Article  Google Scholar 

  20. B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum chemistry, Nature 547, 298 (2017).

    Article  Google Scholar 

  21. M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392, 45 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  23. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91, 015006 (2019).

    Article  MathSciNet  Google Scholar 

  24. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Photonic crystals, Solid State Commun. 102, 165 (1997).

    Article  Google Scholar 

  25. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, Berlin, Heidelberg, 2007).

    Google Scholar 

  26. F. D. M. Haldane, and S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett. 100, 013904 (2008).

    Article  Google Scholar 

  27. S. Raghu, and F. D. M. Haldane, Analogs of quantum-Hall-effect edge states in photonic crystals, Phys. Rev. A 78, 033834 (2008).

    Article  Google Scholar 

  28. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature 461, 772 (2009).

    Article  Google Scholar 

  29. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett. 100, 013905 (2008).

    Article  Google Scholar 

  30. S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater. 1, 16001 (2016).

    Article  Google Scholar 

  31. T. Miyashita, Sonic crystals and sonic wave-guides, Meas. Sci. Technol. 16, R47 (2005).

    Article  Google Scholar 

  32. Y. Ding, Y. Peng, Y. Zhu, X. Fan, J. Yang, B. Liang, X. Zhu, X. Wan, and J. Cheng, Experimental demonstration of acoustic chern insulators, Phys. Rev. Lett. 122, 014302 (2019).

    Article  Google Scholar 

  33. R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Sound isolation and giant linear nonreciprocity in a compact acoustic circulator, Science 343, 516 (2014).

    Article  Google Scholar 

  34. Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Topological acoustics, Phys. Rev. Lett. 114, 114301 (2015).

    Article  Google Scholar 

  35. R. Fleury, A. B. Khanikaev, and A. Alù, Floquet topological insulators for sound, Nat. Commun. 7, 11744 (2016).

    Article  Google Scholar 

  36. Z. G. Chen, and Y. Wu, Tunable topological phononic crystals, Phys. Rev. Appl. 5, 054021 (2016).

    Article  Google Scholar 

  37. X. Zhang, M. **ao, Y. Cheng, M. H. Lu, and J. Christensen, Topological sound, Commun. Phys. 1, 97 (2018).

    Article  Google Scholar 

  38. G. Ma, M. **ao, and C. T. Chan, Topological phases in acoustic and mechanical systems, Nat. Rev. Phys. 1, 281 (2019).

    Article  Google Scholar 

  39. J. Lu, C. Qiu, M. Ke, and Z. Liu, Valley vortex states in sonic crystals, Phys. Rev. Lett. 116, 093901 (2016).

    Article  Google Scholar 

  40. C. He, X. Ni, H. Ge, X. C. Sun, Y. B. Chen, M. H. Lu, X. P. Liu, and Y. F. Chen, Acoustic topological insulator and robust one-way sound transport, Nat. Phys. 12, 1124 (2016).

    Article  Google Scholar 

  41. N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 015001 (2018).

    Article  MathSciNet  Google Scholar 

  42. F. Li, X. Huang, J. Lu, J. Ma, and Z. Liu, Weyl points and Fermi arcs in a chiral phononic crystal, Nat. Phys. 14, 30 (2018).

    Article  Google Scholar 

  43. H. He, C. Qiu, L. Ye, X. Cai, X. Fan, M. Ke, F. Zhang, and Z. Liu, Topological negative refraction of surface acoustic waves in a Weyl phononic crystal, Nature 560, 61 (2018).

    Article  Google Scholar 

  44. H. Xue, Y. Yang, and B. Zhang, Topological acoustics, Nat. Rev. Mater. 7, 974 (2022).

    Article  Google Scholar 

  45. P. M. Morse, and K. U. Ingard, Theoretical Acoustics (Princeton University Press, Princeton, 1987).

    Google Scholar 

  46. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett. 71, 2022 (1993).

    Article  Google Scholar 

  47. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Locally resonant sonic materials, Science 289, 1734 (2000).

    Article  Google Scholar 

  48. G. Ma, and P. Sheng, Acoustic metamaterials: From local resonances to broad horizons, Sci. Adv. 2, e1501595 (2016).

    Article  Google Scholar 

  49. R. Süsstrunk, and S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator, Science 349, 47 (2015).

    Article  Google Scholar 

  50. L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, and W. T. M. Irvine, Topological mechanics of gyroscopic metamaterials, Proc. Natl. Acad. Sci. USA 112, 14495 (2015).

    Article  Google Scholar 

  51. T. Vasileiadis, J. Varghese, V. Babacic, J. Gomis-Bresco, D. Navarro Urrios, and B. Graczykowski, Progress and perspectives on phononic crystals, J. Appl. Phys. 129, 160901 (2021).

    Article  Google Scholar 

  52. Y. Chen, Q. Zhang, Y. Zhang, B. **a, X. Liu, X. Zhou, C. Chen, and G. Hu, Research progress of elastic topological materials, Adv. Mech. 51, 189 (2021).

    Google Scholar 

  53. T. Shah, C. Brendel, V. Peano, and F. Marquardt, Topologically protected transport in engineered mechanical systems, ar**v: 2206.12337.

  54. M. Oudich, N. JRK Gerard, Y. Deng, and Y. **g, Bandgap engineering in phononic crystals and elastic metamaterials, ar**v: 2207.05234.

  55. M. **ao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, Geometric phase and band inversion in periodic acoustic systems, Nat. Phys. 11, 240 (2015).

    Article  Google Scholar 

  56. J. Yin, M. Ruzzene, J. Wen, D. Yu, L. Cai, and L. Yue, Band transition and topological interface modes in 1D elastic phononic crystals, Sci. Rep. 8, 6806 (2018).

    Article  Google Scholar 

  57. I. Kim, S. Iwamoto, and Y. Arakawa, Topologically protected elastic waves in one-dimensional phononic crystals of continuous media, Appl. Phys. Express 11, 017201 (2018).

    Article  Google Scholar 

  58. S. Lin, L. Zhang, T. Tian, C. K. Duan, and J. Du, Dynamic observation of topological soliton states in a programmable nanomechanical lattice, Nano Lett. 21, 1025 (2021).

    Article  Google Scholar 

  59. D. Hatanaka, I. Mahboob, K. Onomitsu, and H. Yamaguchi, Phonon waveguides for electromechanical circuits, Nat. Nanotech. 9, 520 (2014).

    Article  Google Scholar 

  60. L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y. I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate, Phys. Rev. Appl. 12, 014022 (2019).

    Article  Google Scholar 

  61. M. Martí-Sabaté, and D. Torrent, Edge modes for flexural waves in quasi-periodic linear arrays of scatterers, APL Mater. 9, 081107 (2021).

    Article  Google Scholar 

  62. J. Cha, and C. Daraio, Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies, Nat. Nanotech. 13, 1016 (2018).

    Article  Google Scholar 

  63. H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene, A. Alù, C. Daraio, A. N. Norris, G. Huang, and M. R. Haberman, Nonreciprocity in acoustic and elastic materials, Nat. Rev. Mater. 5, 667 (2020).

    Article  Google Scholar 

  64. Y. Chen, X. Li, H. Nassar, A. N. Norris, C. Daraio, and G. Huang, Nonreciprocal wave propagation in a continuum-based metamaterial with space-time modulated resonators, Phys. Rev. Appl. 11, 064052 (2019).

    Article  Google Scholar 

  65. L. Feng, K. Huang, J. Chen, J. C. Luo, H. Huang, and S. Huo, Magnetically tunable topological interface states for Lamb waves in one-dimensional magnetoelastic phononic crystal slabs, AIP Adv. 9, 115201 (2019).

    Article  Google Scholar 

  66. S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Topologically protected elastic waves in phononic metamaterials, Nat. Commun. 6, 8682 (2015).

    Article  Google Scholar 

  67. M. Miniaci, R. K. Pal, B. Morvan, and M. Ruzzene, Experimental observation of topologically protected helical edge modes in patterned elastic plates, Phys. Rev. X 8, 031074 (2018).

    Google Scholar 

  68. S. Y. Yu, C. He, Z. Wang, F. K. Liu, X. C. Sun, Z. Li, H. Z. Lu, M. H. Lu, X. P. Liu, and Y. F. Chen, Elastic pseudospin transport for integratable topological phononic circuits, Nat. Commun. 9, 3072 (2018).

    Article  Google Scholar 

  69. S. Y. Yu, C. He, X. C. Sun, H. F. Wang, J. Q. Wang, Z. D. Zhang, B. Y. **e, Y. Tian, M. H. Lu, and Y. F. Chen, Critical couplings in topological-insulator waveguide-resonator systems observed in elastic waves, Natl. Sci. Rev. 8, nwaa262 (2021).

    Article  Google Scholar 

  70. J. Cha, K. W. Kim, and C. Daraio, Experimental realization of on-chip topological nanoelectromechanical metamaterials, Nature 564, 229 (2018).

    Article  Google Scholar 

  71. Z. D. Zhang, S. Y. Yu, H. Ge, J. Q. Wang, H. F. Wang, K. F. Liu, T. Wu, C. He, M. H. Lu, and Y. F. Chen, Topological surface acoustic waves, Phys. Rev. Appl. 16, 044008 (2021).

    Article  Google Scholar 

  72. J. Ma, X. **, Y. Li, and X. Sun, Nanomechanical topological insulators with an auxiliary orbital degree of freedom, Nat. Nanotechnol. 16, 576 (2021).

    Article  Google Scholar 

  73. Y. Wu, J. Lu, X. Huang, Y. Yang, L. Luo, L. Yang, F. Li, W. Deng, and Z. Liu, Topological materials for full-vector elastic waves, Natl. Sci. Rev. 10, nwac203 (2022).

    Article  Google Scholar 

  74. H. Chen, H. Nassar, A. N. Norris, G. K. Hu, and G. L. Huang, Elastic quantum spin Hall effect in kagome lattices, Phys. Rev. B 98, 094302 (2018).

    Article  Google Scholar 

  75. R. Chaunsali, C. W. Chen, and J. Yang, Experimental demonstration of topological waveguiding in elastic plates with local resonators, New J. Phys. 20, 113036 (2018).

    Article  Google Scholar 

  76. J. Li, J. Wang, S. Wu, and J. Mei, Pseudospins and topological edge states in elastic shear waves, AIP Adv. 7, 125030 (2017).

    Article  Google Scholar 

  77. B. **a, Z. Jiang, L. Tong, S. Zheng, and X. Man, Topological bound states in elastic phononic plates induced by disclinations, Acta Mech. Sin. 38, 521459 (2022).

    Article  MathSciNet  Google Scholar 

  78. D. Torrent, D. Mayou, and J. Sánchez-Dehesa, Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates, Phys. Rev. B 87, 115143 (2013).

    Article  Google Scholar 

  79. S. Y. Yu, X. C. Sun, X. Ni, Q. Wang, X. J. Yan, C. He, X. P. Liu, L. Feng, M. H. Lu, and Y. F. Chen, Surface phononic graphene, Nat. Mater. 15, 1243 (2016).

    Article  Google Scholar 

  80. M. Lanoy, F. Lemoult, A. Eddi, and C. Prada, Dirac cones and chiral selection of elastic waves in a soft strip, Proc. Natl. Acad. Sci. USA 117, 30186 (2020).

    Article  Google Scholar 

  81. G. H. Li, T. X. Ma, Y. Z. Wang, and Y. S. Wang, Active control on topological immunity of elastic wave metamaterials, Sci. Rep. 10, 9376 (2020).

    Article  Google Scholar 

  82. J. Vila, R. K. Pal, and M. Ruzzene, Observation of topological valley modes in an elastic hexagonal lattice, Phys. Rev. B 96, 134307 (2017).

    Article  Google Scholar 

  83. M. Yan, J. Lu, F. Li, W. Deng, X. Huang, J. Ma, and Z. Liu, On-chip valley topological materials for elastic wave manipulation, Nat. Mater. 17, 993 (2018).

    Article  Google Scholar 

  84. H. Ren, T. Shah, H. Pfeifer, C. Brendel, V. Peano, F. Marquardt, and O. Painter, Topological phonon transport in an optomechanical system, Nat. Commun. 13, 3476 (2022).

    Article  Google Scholar 

  85. Q. Zhang, D. Lee, L. Zheng, X. Ma, S. I. Meyer, L. He, H. Ye, Z. Gong, B. Zhen, K. Lai, and A. T. C. Johnson, Gigahertz topological valley Hall effect in nanoelectromechanical phononic crystals, Nat. Electron. 5, 157 (2022).

    Article  Google Scholar 

  86. Y. Nii, and Y. Onose, Microwave impedance microscopy imaging of acoustic topological edge mode on a patterned substrate, ar**v: 2206.02318.

  87. I. Kim, Y. Arakawa, and S. Iwamoto, Design of GaAs-based valley phononic crystals with multiple complete phononic bandgaps at ultra-high frequency, Appl. Phys. Express 12, 047001 (2019).

    Article  Google Scholar 

  88. J. Ma, X. **, and X. Sun, Experimental demonstration of dual-band nano-electromechanical valley-Hall topological metamaterials, Adv. Mater. 33, 2006521 (2021).

    Article  Google Scholar 

  89. K. Tang, M. Makwana, R. V. Craster, and P. Sebbah, Observations of symmetry-induced topological mode steering in a reconfigurable elastic plate, Phys. Rev. B 102, 214103 (2020).

    Article  Google Scholar 

  90. H. Zhu, T. W. Liu, and F. Semperlotti, Design and experimental observation of valley-Hall edge states in diatomic-graphene-like elastic waveguides, Phys. Rev. B 97, 174301 (2018).

    Article  Google Scholar 

  91. Q. Zhang, Y. Chen, K. Zhang, and G. Hu, Dirac degeneracy and elastic topological valley modes induced by local resonant states, Phys. Rev. B 101, 014101 (2020).

    Article  Google Scholar 

  92. S. Li, D. Zhao, H. Niu, X. Zhu, and J. Zang, Observation of elastic topological states in soft materials, Nat. Commun. 9, 1370 (2018).

    Article  Google Scholar 

  93. T. W. Liu, and F. Semperlotti, Experimental evidence of robust acoustic valley hall edge states in a nonresonant topological elastic waveguide, Phys. Rev. Appl. 11, 014040 (2019).

    Article  Google Scholar 

  94. J. Jiao, T. Chen, H. Dai, and D. Yu, Observation of topological valley transport of elastic waves in bilayer phononic crystal slabs, Phys. Lett. A 383, 125988 (2019).

    Article  Google Scholar 

  95. J. Wang, and J. Mei, Topological valley-chiral edge states of Lamb waves in elastic thin plates, Appl. Phys. Express 11, 057302 (2018).

    Article  Google Scholar 

  96. M. P. Makwana, and R. V. Craster, Geometrically navigating topological plate modes around gentle and sharp bends, Phys. Rev. B 98, 184105 (2018).

    Article  Google Scholar 

  97. L. Tong, H. Fan, and B. **a, Elastic phononic plates with first-order and second-order topological phases, J. Phys. D-Appl. Phys. 53, 115303 (2020).

    Article  Google Scholar 

  98. J. Mei, J. Wang, X. Zhang, S. Yu, Z. Wang, and M. H. Lu, Robust and high-capacity phononic communications through topological edge states by discrete degree-of-freedom multiplexing, Phys. Rev. Appl. 12, 054041 (2019).

    Article  Google Scholar 

  99. X. **, J. Ma, S. Wan, C. H. Dong, and X. Sun, Observation of chiral edge states in gapped nanomechanical graphene, Sci. Adv. 7, eabe1398 (2021).

    Article  Google Scholar 

  100. M. P. Makwana, and R. V. Craster, Designing multidirectional energy splitters and topological valley supernetworks, Phys. Rev. B 98, 235125 (2018).

    Article  Google Scholar 

  101. S. Huo, J. Chen, H. Huang, Y. Wei, Z. Tan, L. Feng, and X. **e, Experimental demonstration of valley-protected backscattering suppression and interlayer topological transport for elastic wave in three-dimensional phononic crystals, Mech. Syst. Signal Process. 154, 107543 (2021).

    Article  Google Scholar 

  102. B. **a, J. Zhang, L. Tong, S. Zheng, and X. Man, Topologically valley-polarized edge states in elastic phononic plates yielded by lattice defects, Int. J. Solids Struct. 239–240, 111413 (2022).

    Article  Google Scholar 

  103. S. Zhang, S. You, and W. Li, Waveguide characteristics of adjustable magnetorheological mechanical topological insulator, Jpn. J. Appl. Phys. 60, 044002 (2021).

    Article  Google Scholar 

  104. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  105. S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349, 613 (2015).

    Article  Google Scholar 

  106. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  107. S. Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T. R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C. C. Lee, S. M. Huang, B. K. Wang, A. Bansil, H. T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Zahid Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys. 11, 748 (2015).

    Article  Google Scholar 

  108. B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Observation of Weyl nodes in TaAs, Nat. Phys. 11, 724 (2015).

    Article  Google Scholar 

  109. L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, Weyl points and line nodes in gyroid photonic crystals, Nat. Photon 7, 294 (2013).

    Article  Google Scholar 

  110. L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, Experimental observation of Weyl points, Science 349, 622 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  111. W. J. Chen, M. **ao, and C. T. Chan, Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states, Nat. Commun. 7, 13038 (2016).

    Article  Google Scholar 

  112. J. Noh, S. Huang, D. Leykam, Y. D. Chong, K. P. Chen, and M. C. Rechtsman, Experimental observation of optical Weyl points and Fermi arc-like surface states, Nat. Phys. 13, 611 (2017).

    Article  Google Scholar 

  113. M. **ao, W. J. Chen, W. Y. He, and C. T. Chan, Synthetic gauge flux and Weyl points in acoustic systems, Nat. Phys. 11, 920 (2015).

    Article  Google Scholar 

  114. Y. T. Wang, and Y. W. Tsai, Multiple Weyl and double-Weyl points in an elastic chiral lattice, New J. Phys. 20, 083031 (2018).

    Article  Google Scholar 

  115. X. Shi, R. Chaunsali, F. Li, and J. Yang, Elastic Weyl points and surface arc states in three-dimensional structures, Phys. Rev. Appl. 12, 024058 (2019).

    Article  Google Scholar 

  116. S. S. Ganti, T. W. Liu, and F. Semperlotti, Weyl points and topological surface states in a three-dimensional sandwich-type elastic lattice, New J. Phys. 22, 083001 (2020).

    Article  Google Scholar 

  117. M. Ezawa, Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices, Phys. Rev. Lett. 120, 026801 (2018).

    Article  Google Scholar 

  118. H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, Acoustic higher-order topological insulator on a kagome lattice, Nat. Mater. 18, 108 (2019).

    Article  Google Scholar 

  119. X. Ni, M. Weiner, A. Alù, and A. B. Khanikaev, Observation of higher-order topological acoustic states protected by generalized chiral symmetry, Nat. Mater. 18, 113 (2019).

    Article  Google Scholar 

  120. X. Zhang, H. X. Wang, Z. K. Lin, Y. Tian, B. **e, M. H. Lu, Y. F. Chen, and J. H. Jiang, Second-order topology and multidimensional topological transitions in sonic crystals, Nat. Phys. 15, 582 (2019).

    Article  Google Scholar 

  121. M. Weiner, X. Ni, M. Li, A. Alù, and A. B. Khanikaev, Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial, Sci. Adv. 6, eaay4166 (2020).

    Article  Google Scholar 

  122. H. Xue, Y. Yang, G. Liu, F. Gao, Y. Chong, and B. Zhang, Realization of an acoustic third-order topological insulator, Phys. Rev. Lett. 122, 244301 (2019).

    Article  Google Scholar 

  123. H. Fan, B. **a, L. Tong, S. Zheng, and D. Yu, Elastic higher-order topological insulator with topologically protected corner states, Phys. Rev. Lett. 122, 204301 (2019).

    Article  Google Scholar 

  124. Y. Wu, M. Yan, Z. K. Lin, H. X. Wang, F. Li, and J. H. Jiang, On-chip higher-order topological micromechanical metamaterials, Sci. Bull. 66, 1959 (2021).

    Article  Google Scholar 

  125. C. W. Chen, R. Chaunsali, J. Christensen, G. Theocharis, and J. Yang, Corner states in a second-order mechanical topological insulator, Commun. Mater. 2, 62 (2021).

    Article  Google Scholar 

  126. Z. Wang, and Q. Wei, An elastic higher-order topological insulator based on kagome phononic crystals, J. Appl. Phys. 129, 035102 (2021).

    Article  Google Scholar 

  127. Z. Wang, Q. Wei, H. Y. Xu, and D. J. Wu, Elastic higher-order topological insulators with quantization of the quadrupole moments, ar**v: 1909.03682.

  128. H. Danawe, H. Li, H. A. Ba’ba’a, and S. Tol, Existence of corner modes in elastic twisted kagome lattices, Phys. Rev. B 104, L241107 (2021).

    Article  Google Scholar 

  129. Z. Wang, Q. Wei, H. Y. Xu, and D. J. Wu, A higher-order topological insulator with wide bandgaps in Lamb-wave systems, J. Appl. Phys. 127, 075105 (2020).

    Article  Google Scholar 

  130. Q. Wu, H. Chen, X. Li, and G. Huang, In-plane second-order topologically protected states in elastic kagome lattices, Phys. Rev. Appl. 14, 014084 (2020).

    Article  Google Scholar 

  131. W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357, 61 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  132. M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, Observation of a phononic quadrupole topological insulator, Nature 555, 342 (2018).

    Article  Google Scholar 

  133. K. H. Matlack, M. Serra-Garcia, A. Palermo, S. D. Huber, and C. Daraio, Designing perturbative metamaterials from discrete models, Nat. Mater. 17, 323 (2018).

    Article  Google Scholar 

  134. C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl, A quantized microwave quadrupole insulator with topologically protected corner states, Nature 555, 346 (2018).

    Article  Google Scholar 

  135. S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, and M. Hafezi, Photonic quadrupole topological phases, Nat. Photon. 13, 692 (2019).

    Article  Google Scholar 

  136. L. He, Z. Addison, E. J. Mele, and B. Zhen, Quadrupole topological photonic crystals, Nat. Commun. 11, 3119 (2020).

    Article  Google Scholar 

  137. Y. Qi, C. Qiu, M. **ao, H. He, M. Ke, and Z. Liu, Acoustic realization of quadrupole topological insulators, Phys. Rev. Lett. 124, 206601 (2020).

    Article  Google Scholar 

  138. W. Wang, Z. G. Chen, and G. Ma, Synthetic three-dimensional Z×Z2 topological Insulator in an elastic metacrystal, Phys. Rev. Lett. 127, 214302 (2021).

    Article  Google Scholar 

  139. M. Yan, W. Deng, X. Huang, Y. Wu, Y. Yang, J. Lu, F. Li, and Z. Liu, Pseudomagnetic fields enabled manipulation of on-chip elastic waves, Phys. Rev. Lett. 127, 136401 (2021).

    Article  Google Scholar 

  140. J. Luo, L. Feng, H. Huang, and J. Chen, Pseudomagnetic fields and Landau levels for out-of-plane elastic waves in gradient snowflake-shaped crystals, Phys. Lett. A 383, 125974 (2019).

    Article  Google Scholar 

  141. A. Darabi, X. Ni, M. Leamy, and A. Alù, Reconfigurable Floquet elastodynamic topological insulator based on synthetic angular momentum bias, Sci. Adv. 6, eaba8656 (2020).

    Article  Google Scholar 

  142. H. Tong, S. Liu, M. Zhao, and K. Fang, Observation of phonon trap** in the continuum with topological charges, Nat. Commun. 11, 5216 (2020).

    Article  Google Scholar 

  143. C. Scheibner, W. T. M. Irvine, and V. Vitelli, Non-hermitian band topology and skin modes in active elastic media, Phys. Rev. Lett. 125, 118001 (2020).

    Article  MathSciNet  Google Scholar 

  144. E. Riva, M. I. N. Rosa, and M. Ruzzene, Edge states and topological pum** in stiffness-modulated elastic plates, Phys. Rev. B 101, 094307 (2020).

    Article  Google Scholar 

  145. I. H. Grinberg, M. Lin, C. Harris, W. A. Benalcazar, C. W. Peterson, T. L. Hughes, and G. Bahl, Robust temporal pum** in a magnetomechanical topological insulator, Nat. Commun. 11, 974 (2020).

    Article  Google Scholar 

  146. D. Bartolo, and D. Carpentier, Topological elasticity of nonorientable ribbons, Phys. Rev. X 9, 041058 (2019).

    Google Scholar 

  147. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic Floquet topological insulators, Nature 496, 196 (2013).

    Article  Google Scholar 

  148. N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nat. Phys. 7, 490 (2011).

    Article  Google Scholar 

  149. Y. G. Peng, C. Z. Qin, D. G. Zhao, Y. X. Shen, X. Y. Xu, M. Bao, H. Jia, and X. F. Zhu, Experimental demonstration of anomalous Floquet topological insulator for sound, Nat. Commun. 7, 13368 (2016).

    Article  Google Scholar 

  150. J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, Observation and differentiation of unique High-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs, Phys. Rev. Lett. 109, 067401 (2012).

    Article  Google Scholar 

  151. C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, Observation of trapped light within the radiation continuum, Nature 499, 188 (2013).

    Article  Google Scholar 

  152. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, Lasing action from photonic bound states in continuum, Nature 541, 196 (2017).

    Article  Google Scholar 

  153. Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69, 249 (2020).

    Article  Google Scholar 

  154. M. A. Miri, and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  155. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 015005 (2021).

    Article  MathSciNet  Google Scholar 

  156. K. Ding, C. Fang, and G. Ma, Non-Hermitian topology and exceptional-point geometries, Nat. Rev. Phys. 4, 745 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2022YFA1404900, 2022YFA1404500, and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 11890701, 11974120, 11974005, 12074128, and 12222405), and Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2019B151502012, 2021B1515020086, and 2022B1515020102).

Author information

Authors and Affiliations

Authors

Contributions

Xueqin Huang and Jiuyang Lu contributed equally to this work. All the authors wrote the first draft of the manuscript, revised and edited the final version.

Corresponding author

Correspondence to Zhengyou Liu  (刘**猷).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Lu, J., Deng, W. et al. Topological materials for elastic wave in continuum. Acta Mech. Sin. 39, 723041 (2023). https://doi.org/10.1007/s10409-023-23041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23041-x

Keywords

Navigation