Log in

Uniform momentum zones on the smooth and superhydrophobic surfaces in a turbulent boundary layer

湍流边界层中光滑表面和超疏水表面上的均匀动量区

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The characteristics and dynamics of the uniform momentum zones (UMZs) on a smooth surface and a superhydrophobic (SHPo) surface in a turbulent boundary layer (TBL) are studied using two-dimensional time-resolved particle image velocimetry (PIV) at Reτ = uτδ/υ= 528 (where uτ is the wall friction velocity, δ is the thickness of the boundary layer, and υ is the kinematic viscosity of water). The turbulent/non-turbulent interface (TNTI) is detected by the local turbulent kinetic energy deficit to remove the region of non-turbulent flow. Then the UMZs are detected from the probability density functions (PDFs) of the instantaneous streamwise velocity in the turbulent region. The characteristics of the UMZs are studied using two classification methods to summarize its development and evolution in the TBL. The effects of the SHPo surface on the characteristics of the UMZs are investigated by comparison. The instantaneous flow fields are classified according to the number of the UMZs contained. The connection between the height of the TNTI and the number of zones contained in the flow fields is summarized. The influence of UMZs on turbulence dynamics is investigated. The behaviors of ejections/sweeps and their contributions to Reynolds stress are discussed categorically using quadrant analysis as well as conditional average. The corresponding differences on the SHPo surface are discussed.

摘要

Reτ=528的湍流边界层中使用时间分辨的二维PIV研究了光滑表面和超疏水表面上的等动量区. 通过局部动能亏损率检测了湍流/非湍流界面, 随后在瞬时速度场中通过流向速度的概率密度函数检测了湍流区域中的等动量区. 使用了两种分类方法分析了等动量区在湍流边界层中的发展和演化, 对比研究了超疏水表面对等动量区特性的影响. 根据瞬时快照中包含的等动量区的数量对流场进行分类, 研究了湍流/非湍流界面的高度与流场中包含的等动量区数量之间的联系, 对比了不同类别流场的统计量, 讨论了等动量区在不同法向高度对于喷射/扫掠事件的贡献, 并讨论了结果在超疏水表面上的差异.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. M. de Silva, N. Hutchins, and I. Marusic, Uniform momentum zones in turbulent boundary layers, J. Fluid Mech. 786, 309 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. J. Adrian, Hairpin vortex organization in wall turbulence, Phys. Fluids 19, 041301 (2007).

    Article  MATH  Google Scholar 

  3. N. Hutchins, and I. Marusic, Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech. 579, 1 (2007).

    Article  MATH  Google Scholar 

  4. Y. Duan, P. Zhang, Q. Zhong, D. Zhu, and D. Li, Characteristics of wall-attached motions in open channel flows, Phys. Fluids 32, 055110 (2020).

    Article  Google Scholar 

  5. L. W. Wang, C. Pan, and J. J. Wang, Wall-attached and wall-detached eddies in proper orthogonal decomposition modes of a turbulent channel flow, Phys. Fluids 34, 095124 (2022).

    Article  Google Scholar 

  6. B. Ganapathisubramani, E. K. Longmire, and I. Marusic, Characteristics of vortex packets in turbulent boundary layers, J. Fluid Mech. 478, 35 (2003).

    Article  MATH  Google Scholar 

  7. J. Jiménez, Cascades in wall-bounded turbulence, Annu. Rev. Fluid Mech. 44, 27 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. C. D. Meinhart, and R. J. Adrian, On the existence of uniform momentum zones in a turbulent boundary layer, Phys. Fluids 7, 694 (1995).

    Article  Google Scholar 

  9. J. H. Lee, and H. J. Sung, Very-large-scale motions in a turbulent boundary layer, J. Fluid Mech. 673, 80 (2011).

    Article  MATH  Google Scholar 

  10. C. M. de Silva, J. Philip, N. Hutchins, and I. Marusic, Interfaces of uniform momentum zones in turbulent boundary layers, J. Fluid Mech. 820, 451 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Laskari, R. de Kat, R. J. Hearst, and B. Ganapathisubramani, Time evolution of uniform momentum zones in a turbulent boundary layer, J. Fluid Mech. 842, 554 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  12. Z. Tang, Z. Fan, L. Chen, and N. Jiang, Outer-layer structure arrangements based on the large-scale zero-crossings at moderate Reynolds number, Phys. Fluids 33, 085121 (2021).

    Article  Google Scholar 

  13. L. Chen, Z. Fan, Z. Tang, X. Wang, D. Shi, and N. Jiang, Outer-layer coherent structures from the turbulent/non-turbulent interface perspective at moderate Reynolds number, Exp. Thermal Fluid Sci. 140, 110760 (2023).

    Article  Google Scholar 

  14. J. P. Rothstein, Slip on superhydrophobic surfaces, Annu. Rev. Fluid Mech. 42, 89 (2010).

    Article  Google Scholar 

  15. M. Xu, N. Yu, J. Kim, and C. J. Kim, Superhydrophobic drag reduction in high-speed towing tank, J. Fluid Mech. 908, A6 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Xu, A. Grabowski, N. Yu, G. Kerezyte, J. W. Lee, B. R. Pfeifer, and C. J. C. Kim, Superhydrophobic drag reduction for turbulent flows in open water, Phys. Rev. Appl. 13, 034056 (2020).

    Article  Google Scholar 

  17. M. Monfared, M. A. Alidoostan, and B. Saranjam, Experimental study on the friction drag reduction of superhydrophobic surfaces in closed channel flow, J. Appl. Fluid Mech. 12, 69 (2019).

    Article  Google Scholar 

  18. Y. F. Wang, X. W. Wang, X. Y. Ma, Z. Q. Tang, and N. Jiang, Effects of the superhydrophobic surface on coherent structures in the turbulent boundary layer, Acta Mech. Sin. 38, 322022 (2022).

    Article  MathSciNet  Google Scholar 

  19. J. Westerweel, P. F. Geelhoed, and R. Lindken, Single-pixel resolution ensemble correlation for micro-PIV applications, Exp. Fluids 37, 375 (2004).

    Article  Google Scholar 

  20. J. Westerweel, and F. Scarano, Universal outlier detection for PIV data, Exp. Fluids 39, 1096 (2005).

    Article  Google Scholar 

  21. R. J. Adrian, C. D. Meinhart, and C. D. Tomkins, Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech. 422, 1 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Thavamani, C. Cuvier, C. Willert, J. M. Foucaut, C. Atkinson, and J. Soria, Characterisation of uniform momentum zones in adverse pressure gradient turbulent boundary layers, Exp. Thermal Fluid Sci. 115, 110080 (2020).

    Article  Google Scholar 

  23. X. Chen, Y. M. Chung, and M. Wan, Uniform-momentum zones in a turbulent pipe flow, J. Fluid Mech. 884, A25 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Chauhan, J. Philip, C. M. de Silva, N. Hutchins, and I. Marusic, The turbulent/non-turbulent interface and entrainment in a boundary layer, J. Fluid Mech. 742, 119 (2014).

    Article  Google Scholar 

  25. K. A. Chauhan, P. A. Monkewitz, and H. M. Nagib, Criteria for assessing experiments in zero pressure gradient boundary layers, Fluid Dyn. Res. 41, 021404 (2009).

    Article  MATH  Google Scholar 

  26. A. E. Perry, and M. S. Chong, On the mechanism of wall turbulence, J. Fluid Mech. 119, 173 (1982).

    Article  MATH  Google Scholar 

  27. I. Marusic, and J. P. Monty, Attached eddy model of wall turbulence, Annu. Rev. Fluid Mech. 51, 49 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Heisel, C. M. de Silva, N. Hutchins, I. Marusic, and M. Guala, On the mixing length eddies and logarithmic mean velocity profile in wall turbulence, J. Fluid Mech. 887, R1 (2020).

    Article  Google Scholar 

  29. N. Hutchins, and I. Marusic, Large-scale influences in near-wall turbulence, Phil. Trans. R. Soc. A. 365, 647 (2007).

    Article  MATH  Google Scholar 

  30. S. S. Lu, and W. W. Willmarth, Measurements of the structure of the Reynolds stress in a turbulent boundary layer, J. Fluid Mech. 60, 481 (1973).

    Article  Google Scholar 

  31. J. M. Wallace, Quadrant analysis in turbulence research: History and evolution, Annu. Rev. Fluid Mech. 48, 131 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972251, 11902218, 12172242, 12272265, 12202310), Chinesisch-Deutsche Zentrum für Wissenschaftsförderung (Grant No. GZ1575), China Postdoctoral Science Foundation (Grant No. 2022M712357), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11802195).

Author information

Authors and Affiliations

Authors

Contributions

Yu-Fei Wang designed the research. Yu-Fei Wang, Yi-Jun Huang and **-Hao Zhang performed the experiment. Yu-Fei Wang analyzed the experimental data. Yi-Jun Huang and **-Hao Zhang helped organize the manuscript. Hai-** Tian revised and edited the final version. Nan Jiang provided financial support and experimental equipment for this research.

Corresponding author

Correspondence to Nan Jiang  (姜楠).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YF., Huang, YJ., Zhang, JH. et al. Uniform momentum zones on the smooth and superhydrophobic surfaces in a turbulent boundary layer. Acta Mech. Sin. 39, 322467 (2023). https://doi.org/10.1007/s10409-023-22467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22467-x

Keywords

Navigation