Log in

An exploratory study of underwater bolted connection looseness detection using percussion and a shallow machine learning algorithm

利用叩击和浅层机器学**算法进行水下螺栓连接件松动检测的探索性研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

As the looseness of underwater bolted connections may cause catastrophic consequences, their regular inspection is vital. This paper proposes an exploratory approach to detecting the looseness condition of underwater bolted connections by percussion. The sound produced by tap** a bolted connection will alter when the preload on the connection reduces. Using the power spectrum density for feature selection, the proposed approach employs the frequency feature change of impact-induced sounds and implements the KNN (K-nearest neighbors) algorithm, a shallow machine learning method, to identify the corresponding looseness status. Experiments demonstrate effective performances of the proposed method.

摘要

水下螺栓连接件松动可能导致灾难性后果, 因此, 对其进行定期检测至关重要. 本文探索性地提出了一种通过叩击检测水下螺栓连接件松动情况的方法. 当螺栓连接件预紧力降低时, 通过敲击其产生的声音会发生相应变化. 该方法利用功率谱密度进行特征选择, 根据叩击引起的声音频率特征变化, 采用浅层机器学**方法K**邻算法来识别相应的松动状态. 实验结果证明了该方法的有效性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

References

  1. D. Wang, and X. Fan, Nonlinear dynamic modeling for joint interfaces by combining equivalent linear mechanics with multi-objective optimization, Acta Mech. Solid Sin. 33, 564 (2020).

    Article  Google Scholar 

  2. R. Miao, R. Shen, S. Zhang, and S. Xue, A review of bolt tightening force measurement and loosening detection, Sensors 20, 3165 (2020).

    Article  Google Scholar 

  3. A. Wolfenden, G. C. Johnson, A. C. Holt, and B. Cunningham, An ultrasonic method for determining axial stress in bolts, J. Test. Eval. 14, 253 (1986).

    Article  Google Scholar 

  4. Q. Pan, R. Pan, C. Shao, M. Chang, and X. Xu, Research review of principles and methods for ultrasonic measurement of axial stress in bolts, Chin. J. Mech. Eng. 33, 11 (2020).

    Article  Google Scholar 

  5. X. Ding, X. Wu, and Y. Wang, Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer, Ultrasonics 54, 914 (2014).

    Article  Google Scholar 

  6. K. Y. Jhang, H. H. Quan, J. Ha, and N. Y. Kim, Estimation of clam** force in high-tension bolts through ultrasonic velocity measurement, Ultrasonics 44, e1339 (2006).

    Article  Google Scholar 

  7. X. Jia, X. Wang, W. Gan, and W. Ni, Research on calibration of bolt’s axial stress based on acoustoelastic effect, China Measurement Test, (2018).

  8. D. U. Company, MINIMAXv212man. Available: http://www.dakotaultrasonics.com/manuals/MINIMAXv212man.pdf.

  9. Q. Pan, S. Liu, X. Li, and C. Xu, Characteristic evaluation on bolt stress by ultrasonic nondestructive methods, Adv. Mater. Sci. Eng. 2015, 1 (2015).

    Article  Google Scholar 

  10. J. E. Carlson, and P. Lundin, in Measurement of the clam** force applied by load-bearing bolts using a combination of compression and shear ultrasonic waves: Proceedings of 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, 2015.

  11. N. Kim, and M. Hong, Measurement of axial stress using mode-converted ultrasound, NDT E Int. 42, 164 (2009).

    Article  Google Scholar 

  12. J. Jiang, Y. Chen, J. Dai, and Y. Liang, Multi-bolt looseness state monitoring using the recursive analytic based active sensing technique, Measurement 191, 110779 (2022).

    Article  Google Scholar 

  13. R. Yuan, Y. Lv, T. Wang, S. Li, and H. Li, Looseness monitoring of multiple M1 bolt joints using multivariate intrinsic multiscale entropy analysis and Lorentz signal-enhanced piezoelectric active sensing, Struct. Health Monit. 21, 2851 (2022).

    Article  Google Scholar 

  14. F. Wang, A novel autonomous strategy for multi-bolt looseness detection using smart glove and Siamese double-path CapsNet, Struct. Health Monit. 21, 2329 (2022).

    Article  Google Scholar 

  15. J. Yang, and F. K. Chang, Detection of bolt loosening in C-C composite thermal protection panels: I. Diagnostic principle, Smart Mater. Struct. 15, 581 (2006).

    Article  Google Scholar 

  16. J. Yang, and F. K. Chang, Detection of bolt loosening in C-C composite thermal protection panels: II. Experimental verification, Smart Mater. Struct. 15, 591 (2006).

    Article  Google Scholar 

  17. L. Huo, H. Cheng, Q. Kong, and X. Chen, Bond-slip monitoring of concrete structures using smart sensors—A review, Sensors 19, 1231 (2019).

    Article  Google Scholar 

  18. W. Tao, L. Shaopeng, S. Junhua, and L. Yourong, Health monitoring of bolted joints using the time reversal method and piezoelectric transducers, Smart Mater. Struct. 25, 025010 (2016).

    Article  Google Scholar 

  19. S. M. Parvasi, S. C. M. Ho, Q. Kong, R. Mousavi, and G. Song, Real time bolt preload monitoring using piezoceramic transducers and time reversal technique—A numerical study with experimental verification, Smart Mater. Struct. 25, 085015 (2016).

    Article  Google Scholar 

  20. F. Wang, and G. Song, Bolt early looseness monitoring using modified vibro-acoustic modulation by time-reversal, Mech. Syst. Signal Process. 130, 349 (2019).

    Article  Google Scholar 

  21. M. Fukuda, M. Nishihira, and K. Imano, Real time extraction system using double-layered piezoelectric transducer for second-harmonic ultrasonic pulse waves, Jpn. J. Appl. Phys. 45, 4556 (2006).

    Article  Google Scholar 

  22. M. Fukuda, M. Nishihira, and K. Imano, Real time detection of second-harmonic components generated from plastic-deformed metal rod using double-layered piezoelectric transducer, Jpn. J. Appl. Phys. 46, 4529 (2007).

    Article  Google Scholar 

  23. D. M. Donskoy, and A. M. Sutin, Vibro-acoustic modulation nondestructive evaluation technique, J. Intell. Material Syst. Struct. 9, 765 (1998).

    Article  Google Scholar 

  24. J. R. Wait, G. Park, and C. R. Farrar, Integrated structural health assessment using piezoelectric active sensors, Shock Vib. 12, 389 (2005).

    Article  Google Scholar 

  25. S. Ritdumrongkul, M. Abe, Y. Fu**o, and T. Miyashita, Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor, Smart Mater. Struct. 13, 20 (2003).

    Article  Google Scholar 

  26. W. S. Na, Bolt loosening detection using impedance based non-destructive method and probabilistic neural network technique with minimal training data, Eng. Struct. 226, 111228 (2021).

    Article  Google Scholar 

  27. C. Wang, N. Wang, S. C. Ho, X. Chen, M. Pan, and G. Song, Design of a novel wearable sensor device for real-time bolted joints health monitoring, IEEE Internet Things J. 5, 5307 (2018).

    Article  Google Scholar 

  28. T. C. Huynh, N. L. Dang, and J. T. Kim, Preload monitoring in bolted connection using piezoelectric-based smart interface, Sensors 18, 2766 (2018).

    Article  Google Scholar 

  29. N. Hosoya, T. Hosokawa, I. Kajiwara, S. Hashimura, and F. Huda, Evaluation of the clam** force of bolted joints using local mode characteristics of a bolt head, J. Nondestruct. Eval. 37, 1 (2018).

    Article  Google Scholar 

  30. D. B. May, and P. W. Munt, Physiologic effects of chest percussion and postural drainage in patients with stable chronic bronchitis, Chest 75, 29 (1979).

    Article  Google Scholar 

  31. L. Chen, H. **ong, X. Sang, C. Yuan, X. Li, and Q. Kong, An innovative deep neural network-based approach for internal cavity detection of timber columns using percussion sound, Struct. Health Monit. 21, 1251 (2022).

    Article  Google Scholar 

  32. G. Wang, W. Lu, C. Yuan, and Q. Kong, A cable tension identification technology using percussion sound, Smart Struct. Syst. 29, 475 (2022).

    Google Scholar 

  33. C. Yuan, J. Zhang, L. Chen, J. Xu, and Q. Kong, Timber moisture detection using wavelet packet decomposition and convolutional neural network, Smart Mater. Struct. 30, 035022 (2021).

    Article  Google Scholar 

  34. Q. Kong, J. Zhu, S. C. M. Ho, and G. Song, Tap** and listening: A new approach to bolt looseness monitoring, Smart Mater. Struct. 27, 07LT02 (2018).

    Article  Google Scholar 

  35. Y. Zhang, X. Zhao, X. Sun, W. Su, and Z. Xue, Bolt loosening detection based on audio classification, Adv. Struct. Eng. 22, 2882 (2019).

    Article  Google Scholar 

  36. R. Yuan, Y. Lv, Q. Kong, and G. Song, Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network, Smart Mater. Struct. 28, 125001 (2019).

    Article  Google Scholar 

  37. F. Wang, and G. Song, Bolt-looseness detection by a new percussion-based method using multifractal analysis and gradient boosting decision tree, Struct. Health Monit. 19, 2023 (2020).

    Article  Google Scholar 

  38. F. Wang, and G. Song, A novel percussion-based method for multi-bolt looseness detection using one-dimensional memory augmented convolutional long short-term memory networks, Mech. Syst. Signal Process. 161, 107955 (2021).

    Article  Google Scholar 

  39. Y. Zhou, S. Wang, M. Zhou, H. Chen, C. Yuan, and Q. Kong, Percussion-based bolt looseness identification using vibration-guided sound reconstruction, Struct. Contr. Hlth. 29, e2876 (2022).

    Article  Google Scholar 

  40. Z. Yang, and L. Huo, Bolt preload monitoring based on percussion sound signal and convolutional neural network (CNN), Nondestr. Test. Eval. 37, 464 (2022).

    Article  Google Scholar 

  41. S. Zakir Sarothi, K. Sakil Ahmed, N. Imtiaz Khan, A. Ahmed, and M. L. Nehdi, Predicting bearing capacity of double shear bolted connections using machine learning, Eng. Struct. 251, 113497 (2022).

    Article  Google Scholar 

  42. L. Zhu, X. Sun, Y. Liu, and W. Zhang, One neural network approach for the surrogate turbulence model in transonic flows, Acta Mech. Sin. 38, 321187 (2022).

    Article  Google Scholar 

  43. Q. Jiang, L. Zhu, C. Shu, and V. Sekar, Multilayer perceptron neural network activated by adaptive Gaussian radial basis function and its application to predict lid-driven cavity flow, Acta Mech. Sin. 37, 1757 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Texas Commission on Environmental Quality through Subsea Systems Institute Award (Grant No. 582-15-57593). This project was paid for [in part] with federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012 (RESTORE Act).

Author information

Authors and Affiliations

Authors

Contributions

Gangbing Song acquired the funding to support this research and formed the basic concept of this work. Sihong He accomplished the formal analysis, investigation and methodology development, and collected the data. The work was supervised by Gangbing Song and Zheng Chen and validated by Sihong He and Ji’an Chen. The manuscript was drafted by Gangbing Song and Sihong He, and furthur reviewed and polished by Gangbing Song, Sihong He and Zheng Chen.

Corresponding author

Correspondence to Gangbing Song  (宋钢兵).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Chen, J., Chen, Z. et al. An exploratory study of underwater bolted connection looseness detection using percussion and a shallow machine learning algorithm. Acta Mech. Sin. 39, 722360 (2023). https://doi.org/10.1007/s10409-023-22360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22360-x

Navigation