Log in

Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection

预应力下具有初始几何缺陷的石墨烯增**多孔复合材料双曲率壳结构的非线性主共振分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper studies the nonlinear primary resonance behavior of graphene platelet reinforced metal foams (GPLRMFs) doubly curved shells with initial geometric imperfection and pre-stressing force. On the basis of Reddy’s higher-order shear deformation shell theory and von Karman’s geometric nonlinearity, the nonlinear equations of motion of GPLRMFs doubly curved shells are obtained. By considering simply supported boundary conditions and employing the Galerkin method, the nonlinear ordinary differential equations are derived. The primary resonance of the GPLRMFs doubly curved shells is obtained by solving the nonlinear differential equations with the help of the modified Lindstedt Poincare (MLP) method. In the numerical analyses, the correctness of the present model in this paper is confirmed by comparing with the published literature. In the end, the effects of various parameters including the doubly curved shell types, graphene platelets (GPLs) distribution patterns, porosity distribution forms, initial geometric imperfection, GPLs weight fraction, porosity coefficients, and pre-stressing force on the nonlinear amplitude-frequency response curves are analyzed.

摘要

本文研究了石墨烯增**多孔复合材料(GPLRMFs)双曲率壳结构的非线性主共振行为. 考虑初始几何缺陷和预应力, 并基于Reddy高阶剪切变形壳理论和冯卡门几何非线性, 推导出GPLRMFs双曲率壳的非线性运动方程. 接着, 考虑简支边界条件, 利用伽辽金法进行离散得到了非线性常微分方程, 随后, 利用改进的Lindstedt-Poincare (MLP)法求解, 便可以得到GPLRMFs双曲率壳结构的主共振幅频响应关系. 在数值分析中, 通过与现有文献进行比较, 从而验证了本研究的**确性. 最后, 分析了各个参数(包括壳体类型、石墨烯片(GPLs)分布模式、孔隙率分布类型、初始几何缺陷、GPLs重量分数、孔隙率系数和预应力)对非线性主共振幅频响应曲线的影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sobhani, A. R. Masoodi, Ö. Civalek, and M. Avcar, Natural frequency analysis of FG-GOP/polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers, Eng. Anal. Bound. Elem. 138, 369 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  2. Z. Y. Zhang, J. Y. Gu, J. J. Ding, and Y. W. Tao, A semianalytic method for vibration analysis of a sandwich FGP doubly curved shell with arbitrary boundary conditions, Shock Vib. 2021, 9704123 (2021).

    Google Scholar 

  3. T. Liu, Z. M. Li, and P. Qiao, The closed-form solutions for buckling and postbuckling behaviour of anisotropic shear deformable laminated doubly-curved shells by matching method with the boundary layer of shell buckling, Acta Mech. 232, 3277 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Zhu, X. Fang, and G. Nie, Nonlinear free and forced vibration of porous piezoelectric doubly-curved shells based on NUEF model, Thin-Walled Struct. 163, 107678 (2021).

    Article  Google Scholar 

  5. R. Li, C. Zhou, and X. Zheng, On new analytic free vibration solutions of doubly curved shallow shells by the symplectic superposition method within the hamiltonian-system framework, J. Vib. Acoust. 143, 011002 (2021).

    Article  Google Scholar 

  6. Y. Zhai, J. Ma, and S. Liang, Dynamics properties of multi-layered composite sandwich doubly-curved shells, Compos. Struct. 256, 113142 (2021).

    Article  Google Scholar 

  7. S. Huang, and P. Qiao, A new semi-analytical method for nonlinear stability analysis of stiffened laminated composite doubly-curved shallow shells, Compos. Struct. 251, 112526 (2020).

    Article  Google Scholar 

  8. H. Li, F. Pang, Q. Gong, and Y. Teng, Free vibration analysis of axisymmetric functionally graded doubly-curved shells with ununiform thickness distribution based on Ritz method, Compos. Struct. 225, 111145 (2019).

    Article  Google Scholar 

  9. A. Wang, H. Chen, and W. Zhang, Nonlinear transient response of doubly curved shallow shells reinforced with graphene nanoplatelets subjected to blast loads considering thermal effects, Compos. Struct. 225, 111063 (2019).

    Article  Google Scholar 

  10. B. Karami, M. Janghorban, and A. Tounsi, Novel study on functionally graded anisotropic doubly curved nanoshells, Eur. Phys. J. Plus 135, 103 (2020).

    Article  Google Scholar 

  11. B. Karami, and D. Shahsavari, On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets, Comput. Methods Appl. Mech. Eng. 359, 112767 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Badarloo, S. Tayebikhorami, S. M. Mirfatah, H. Salehipour, and O. Civalek, Nonlinear forced vibration analysis of laminated composite doubly-curved shells enriched by nanocomposites incorporating foundation and thermal effects, Aerosp. Sci. Tech. 127, 107717 (2022).

    Article  Google Scholar 

  13. H. R. Esmaeili, Y. Kiani, and Y. T. Beni, Vibration characteristics of composite doubly curved shells reinforced with graphene platelets with arbitrary edge supports, Acta Mech. 233, 665 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Roy, S. Nath Thakur, and C. Ray, A modified higher order zigzag theory for response analysis of doubly curved cross-ply laminated composite shells, Mech. Adv. Mater. Struct. 29, 5026 (2021).

    Article  Google Scholar 

  15. S. Sadripour, R. A. Jafari-Talookolaei, and A. Malekjafarian, Free vibration analysis of deep doubly curved soft-core sandwich panels with different boundary conditions, Structures 40, 880 (2022).

    Article  Google Scholar 

  16. P. Van Vinh, and A. Tounsi, Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters, Thin-Walled Struct. 174, 109084 (2022).

    Article  Google Scholar 

  17. J. Jiao, J. Xu, X. Yuan, and L. Q. Chen, Axisymmetric 3:1 internal resonance of thin-walled hyperelastic cylindrical shells under both axial and radial excitations, Acta Mech. Sin. 38, 521417 (2022).

    Article  MathSciNet  Google Scholar 

  18. X. Guo, S. Wang, L. Sun, and D. Cao, Dynamic responses of a piezoelectric cantilever plate under high-low excitations, Acta Mech. Sin. 36, 234 (2020).

    Article  Google Scholar 

  19. Y. W. Kim, Effect of partial elastic foundation on free vibration of fluid-filled functionally graded cylindrical shells, Acta Mech. Sin. 31, 920 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Ahmadi, A. Bayat, and N. D. Duc, Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method, Compos. Struct. 256, 113090 (2021).

    Article  Google Scholar 

  21. L. Rodrigues, F. M. A. Silva, and P. B. Gonçalves, Effect of geometric imperfections and circumferential symmetry on the internal resonances of cylindrical shells, Int. J. Non-Linear Mech. 139, 103875 (2022).

    Article  Google Scholar 

  22. L. Rodrigues, F. M. A. Silva, and P. B. Gonçalves, Influence of initial geometric imperfections on the 1:1:1:1 internal resonances and nonlinear vibrations of thin-walled cylindrical shells, Thin-Walled Struct. 151, 106730 (2020).

    Article  Google Scholar 

  23. M. Salehi, R. Gholami, and R. Ansari, Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory, Int. J. Str. Stab. Dyn. 22, 2250075 (2022).

    Article  MathSciNet  Google Scholar 

  24. C. Li, P. Li, B. Zhong, and B. Wen, Geometrically nonlinear vibration of laminated composite cylindrical thin shells with non-continuous elastic boundary conditions, Nonlinear Dyn. 95, 1903 (2019).

    Article  MATH  Google Scholar 

  25. M. Yao, Y. Niu, and Y. Hao, Nonlinear dynamic responses of rotating pretwisted cylindrical shells, Nonlinear Dyn. 95, 151 (2019).

    Article  MATH  Google Scholar 

  26. M. Sobhy, and A. F. Radwan, An axial magnetic field effect on frequency analysis of rotating sandwich cylindrical shells with FG graphene/AL face sheets and honeycomb core, Int. J. Appl. Mech. (2022).

  27. S. Kitipornchai, D. Chen, and J. Yang, Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets, Mater. Des. 116, 656 (2017).

    Article  Google Scholar 

  28. M. H. Yas, and S. Rahimi, Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using generalized differential quadrature method, Aerosp. Sci. Tech. 107, 106261 (2020).

    Article  Google Scholar 

  29. Q. Chen, S. Zheng, Z. Li, and C. Zeng, Size-dependent free vibration analysis of functionally graded porous piezoelectric sandwich nanobeam reinforced with graphene platelets with consideration of flexoelectric effect, Smart Mater. Struct. 30, 035008 (2021).

    Article  Google Scholar 

  30. H. Xu, Y. Q. Wang, and Y. Zhang, Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method, Arch. Appl. Mech. 91, 4817 (2021).

    Article  Google Scholar 

  31. M. Sobhy, Postbuckling analysis of FG-GPLs-reinforced double-layered microbeams system integrated with an elastic foundation exposed to thermal load, Eur. Phys. J. Plus 137, 923 (2022).

    Article  Google Scholar 

  32. M. Sobhy, and F. H. H. Al Mukahal, Wave dispersion analysis of functionally graded GPLs-reinforced sandwich piezoelectromagnetic plates with a honeycomb core, Mathematics 10, 3207 (2022).

    Article  Google Scholar 

  33. M. A. Alazwari, A. M. Zenkour, and M. Sobhy, Hygrothermal buckling of smart graphene/piezoelectric nanocomposite circular plates on an elastic substrate via DQM, Mathematics 10, 2638 (2022).

    Article  Google Scholar 

  34. M. Lan, W. Yang, X. Liang, S. Hu, and S. Shen, Vibration modes of flexoelectric circular plate, Acta Mech. Sin. 38, 422063 (2022).

    Article  Google Scholar 

  35. Q. Li, D. Wu, X. Chen, L. Liu, Y. Yu, and W. Gao, Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation, Int. J. Mech. Sci. 148, 596 (2018).

    Article  Google Scholar 

  36. B. Hu, J. Liu, Y. Wang, B. Zhang, and H. Shen, Wave propagation in graphene reinforced piezoelectric sandwich nanoplates via high-order nonlocal strain gradient theory, Acta Mech. Sin. 37, 1446 (2021).

    Article  MathSciNet  Google Scholar 

  37. N. V. Nguyen, H. Nguyen-Xuan, D. Lee, and J. Lee, A novel computational approach to functionally graded porous plates with graphene platelets reinforcement, Thin-Walled Struct. 150, 106684 (2020).

    Article  Google Scholar 

  38. W. Gao, Z. Qin, and F. Chu, Wave propagation in functionally graded porous plates reinforced with graphene platelets, Aerosp. Sci. Tech. 102, 105860 (2020).

    Article  Google Scholar 

  39. Y. Dong, X. Li, K. Gao, Y. Li, and J. Yang, Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment, Nonlinear Dyn. 99, 981 (2020).

    Article  MATH  Google Scholar 

  40. C. Ye, and Y. Q. Wang, Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances, Nonlinear Dyn. 104, 2051 (2021).

    Article  Google Scholar 

  41. M. Xu, X. Li, Y. Luo, G. Wang, Y. Guo, T. Liu, J. Huang, and G. Yan, Thermal buckling of graphene platelets toughening sandwich functionally graded porous plate with temperature-dependent properties, Int. J. Appl. Mech. 12, 2050089 (2020).

    Article  Google Scholar 

  42. M. W. Teng, and Y. Q. Wang, Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets, Thin-Walled Struct. 164, 107799 (2021).

    Article  Google Scholar 

  43. Z. Zhou, Y. Ni, Z. Tong, S. Zhu, J. Sun, and X. Xu, Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells, Int. J. Mech. Sci. 151, 537 (2019).

    Article  Google Scholar 

  44. Q. Chai, and Y. Q. Wang, Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion, Eng. Struct. 252, 113718 (2022).

    Article  Google Scholar 

  45. Y. Q. Wang, C. Ye, and J. W. Zu, Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets, Aerosp. Sci. Tech. 85, 359 (2019).

    Article  Google Scholar 

  46. X. Zu, Z. Gao, J. Zhao, Q. Wang, and H. Li, Vibration suppression performance of FRP spherical-cylindrical shells with porous graphene platelet coating in a thermal environment, Int. J. Str. Stab. Dyn. 22, 2250081 (2022).

    Article  MathSciNet  Google Scholar 

  47. J. N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech. 51, 745 (1984).

    Article  MATH  Google Scholar 

  48. S. H. Chen, and Y. K. Cheung, A modified Lindstedt-Poincaré method for a strongly nonlinear system with quadratic and cubic nonlinearities, Shock Vib. 3, 279 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Talent Introduction Project of Chongqing University (Grant No. 02090011044159), and the Fundamental Research Funds for the Central Universities (Grant No. 2022CDJXY-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Lin She  (佘桂林).

Additional information

Author contributions

In this work, Gui-Lin She was responsible for proposing ideas, and formulating or evolving the overall research goals and aims. Besides, he made great contributions to the preparation, creation, and presentation of writing-original manuscript-published works, especially in writing the first draft (including substantive translation). Hao-Xuan Ding was mainly responsible for programming and data processing, designing computer programs to analyze and research data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, GL., Ding, HX. Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection. Acta Mech. Sin. 39, 522392 (2023). https://doi.org/10.1007/s10409-022-22392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22392-x

Navigation