Log in

Localized collocation schemes and their applications

局部配点法及其应用

  • Invited Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper presents a summary of various localized collocation schemes and their engineering applications. The basic concepts of localized collocation methods (LCMs) are first introduced, such as approximation theory, semianalytical collocation methods and localization strategies. Based on these basic concepts, five different formulations of localized collocation methods are introduced, including the localized radial basis function collocation method (LRBFCM) and the generalized finite difference method (GFDM), the localized method of fundamental solutions (LMFS), the localized radial Trefftz collocation method (LRTCM), and the localized collocation Trefftz method (LCTM). Then, several additional schemes, such as the generalized reciprocity method, Laplace and Fourier transformations, and Krylov deferred correction, are introduced to enable the application of the LCM to large-scale engineering and scientific computing for solving inhomogeneous, nonisotropic and time-dependent partial differential equations. Several typical benchmark examples are presented to show the recent developments and applications on the LCM solution of some selected boundary value problems, such as numerical wave flume, potential-based inverse electrocardiography, wave propagation analysis and 2D phononic crystals, elasticity and in-plane crack problems, heat conduction problems in heterogeneous material and nonlinear time-dependent Burgers’ equations. Finally, some conclusions and outlooks of the LCMs are summarized.

摘要

本文总结了局部配点法的各种离散格式及工程应用. 首先介绍了局部配点法(LCMs)的基本概念, 如逼**理论、半解析配点 法和局部化策略. 基于这些基本概念, 介绍了局部径向基函数配点法(LRBFCM)和广义有限差分法(GFDM)、局部基本解法 (LMFS)、局部径向Trefftz配点法(LRTCM), 局部Trefftz配点法(LCTM). 随后引入了一些诸如如广义互易法(GRM)、拉普拉斯/傅 里叶变换、Krylov延迟校**法等技术, 使得上述局部配点法能用于基于非均质、各向异性和瞬态偏微分方程的大规模工程和科学 计算. 通过几个典型的基准算例, 展示了局部配点法求解边值问题的最新研究进展和应用, 如数值波浪水槽、基于电位势的反向肌 电图生成、波传播分析和声子晶体波传播特性、弹性力学和面内裂纹, 各向异性材料热传导和非线性Burgers方程等. 最后给出局 部配点法的一些研究结论及未来展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Isaacson, H. B. Keller, and G. H. Weiss, Analysis of Numerical Methods (Courier Corporation, North Chelmsford, 2012).

    Google Scholar 

  2. B. Carnahan, Applied Numerical Methods (John Wiley and Sons, Hoboken, 1969).

    MATH  Google Scholar 

  3. G. de Vahl Davis, Numerical Methods in Engineering & science (Springer Science & Business Media, Berlin, 2012).

    MATH  Google Scholar 

  4. J. Ghaboussi, and X. S. Wu, Numerical Methods in Computational Mechanics (CRC Press, Boca Raton, 2016).

    Book  MATH  Google Scholar 

  5. A. Ralston, and P. Rabinowitz, A First Course in Numerical Analysis (Courier Corporation, North Chelmsford, 2001).

    MATH  Google Scholar 

  6. F. B. Hildebrand, Introduction to Numerical Analysis (Courier Corporation, North Chelmsford, 1987).

    MATH  Google Scholar 

  7. J. M. Melenk, and I. Babuška, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng. 139, 289 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  8. Strang, W. Gilbert, J. George, An Analysis of the Finite Element Method (Prentice-Hall, Upper Saddle River, 1973).

    MATH  Google Scholar 

  9. T. J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Courier Corporation, North Chelmsford, 2012).

    Google Scholar 

  10. J. N. Reddy, Introduction to the Finite Element Method (McGraw-Hill Education, New York, 2019).

    Google Scholar 

  11. A. R. Mitchell, and D. F. Griffiths, The Finite Difference Method in Partial Differential Equations (John Wiley, Hoboken, 1980).

    MATH  Google Scholar 

  12. G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27, 1 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. J. Rycroft, Computational electrodynamics, the finite-difference time-domain method, J. Atmos. Terrestrial Phys. 58, 1817 (1996).

    Article  Google Scholar 

  14. J. Park, and I. W. Sandberg, Universal approximation using radial-basis-function networks, Neural Comput. 3, 246 (2015).

    Article  Google Scholar 

  15. W. Chen, Z. Fu, and C. Chen, Recent Advances in Radial Basis Function Collocation Methods (Springer, Berlin, 2014).

    Book  MATH  Google Scholar 

  16. G. E. Fasshauer, Meshfree Approximation Methods with MATLAB (World Scientific, Singapore, 2007).

    Book  MATH  Google Scholar 

  17. A. H. D. Cheng, and Y. Hong, An overview of the method of fundamental solutions—Solvability, uniqueness, convergence, and stability, Eng. Anal. Bound. Elem. 120, 118 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. A. Golberg, The method of fundamental solutions for Poisson’s equation, Eng. Anal. Bound. Elem. 16, 205 (1995).

    Article  Google Scholar 

  19. T. Wei, Y. C. Hon, and L. Ling, Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators, Eng. Anal. Bound. Elem. 31, 373 (2007).

    Article  MATH  Google Scholar 

  20. C. Y. Dong, S. H. Lo, Y. K. Cheung, and K. Y. Lee, Anisotropic thin plate bending problems by Trefftz boundary collocation method, Eng. Anal. Bound. Elem. 28, 1017 (2004).

    Article  MATH  Google Scholar 

  21. E. Kita, and N. Kamiya, Trefftz method: an overview, Adv. Eng. Software 24, 3 (1995).

    Article  MATH  Google Scholar 

  22. Z. C. Li, The Trefftz method for the Helmholtz equation with degeneracy, Appl. Numer. Math. 58, 131 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. J. Benito, F. Ureña, and L. Gavete, Influence of several factors in the generalized finite difference method, Appl. Math. Model. 25, 1039 (2001).

    Article  MATH  Google Scholar 

  24. Z. Tang, Z. Fu, M. Chen, and L. Ling, A localized extrinsic collocation method for Turing pattern formations on surfaces, Appl. Math. Lett. 122, 107534 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Wang, Y. Gu, C. M. Fan, W. Chen, and C. Zhang, Domain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materials, Eng. Anal. Bound. Elem. 94, 94 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Mavrič, and B. Šarler, Local radial basis function collocation method for linear thermoelasticity in two dimensions, Int. J. Numer. Methods Heat Fluid Flow 25, 1488 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Mramor, R. Vertnik, and B. Arler, Simulation of natural convection influenced by magnetic field with explicit local radial basis function collocation method, Comput. Mod. Eng. Sci. 92, 327 (2013).

    MathSciNet  MATH  Google Scholar 

  28. Siraj-ul-Islam, R. Vertnik, and B. Šarler, Local radial basis function collocation method along with explicit time step** for hyperbolic partial differential equations, Appl. Numer. Math. 67, 136 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  29. C. S. Chen, C. M. Fan, and P. H. Wen, The method of approximate particular solutions for solving elliptic problems with variable coefficients, Int. J. Comput. Methods 08, 545 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. J. Fu, W. Chen, and Y. Gu, Burton-Miller-type singular boundary method for acoustic radiation and scattering, J. Sound Vib. 333, 3776 (2014).

    Article  Google Scholar 

  31. Z. C. Tang, Z. J. Fu, and C. S. Chen, A localized MAPS using polynomial basis functions for the fourth-order complex-shape plate bending problems, Arch. Appl. Mech. 90, 2241 (2020).

    Article  Google Scholar 

  32. J. Wang, J. Wu, and D. Wang, A quasi-consistent integration method for efficient meshfree analysis of Helmholtz problems with plane wave basis functions, Eng. Anal. Bound. Elem. 110, 42 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Zhang, and D. Wang, Reproducing kernel formulation of B-spline and NURBS basis functions: a meshfree local refinement strategy for isogeometric analysis, Comput. Methods Appl. Mech. Eng. 320, 474 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  34. X. W. Gao, L. F. Gao, Y. Zhang, M. Cui, and J. Lv, Free element collocation method: A new method combining advantages of finite element and mesh free methods, Comput. Struct. 215, 10 (2019).

    Article  Google Scholar 

  35. H. Liu, X. Gao, and B. Xu, An implicit free element method for simulation of compressible flow, Comput. Fluids 192, 104276 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  36. X. W. Gao, H. Liu, M. Cui, K. Yang, and H. Peng, Free element method and its application in CFD, Eng. Comput. 36, 2747 (2019).

    Article  Google Scholar 

  37. D. **u, and J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput. 27, 1118 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Moritz, Least-squares collocation, Rev. Geophys. 16, 421 (1978).

    Article  Google Scholar 

  39. W. Chen, Symmetric boundary knot method, Eng. Anal. Bound. Elem. 26, 489 (2002).

    Article  MATH  Google Scholar 

  40. X. Jiang, and W. Chen, Method of fundamental solution and boundary knot method for helmholtz equations: a comparative study, Chin. J. Comput. Mech. 28, 338 (2011).

    Google Scholar 

  41. J. Shi, W. Chen, and C. Wang, Free vibration analysis of arbitrary shaped plates by boundary knot method, Acta Mech. Solid Sin. 22, 328 (2009).

    Article  Google Scholar 

  42. C. S. Liu, A modified collocation Trefftz method for the inverse Cauchy problem of Laplace equation, Eng. Anal. Bound. Elem. 32, 778 (2008).

    Article  MATH  Google Scholar 

  43. Z. Li, T. Lu, H. Hu, and A. H. Cheng, Trefftz and Collocation Methods (WIT Press, Southampton, 2008).

    MATH  Google Scholar 

  44. F. Wang, Y. Gu, W. Qu, and C. Zhang, Localized boundary knot method and its application to large-scale acoustic problems, Comput. Methods Appl. Mech. Eng. 361, 112729 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Gu, C. M. Fan, W. Qu, F. Wang, and C. Zhang, Localized method of fundamental solutions for three-dimensional inhomogeneous elliptic problems: theory and MATLAB code, Comput. Mech. 64, 1567 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  46. X. Li, and S. Li, On the augmented moving least squares approximation and the localized method of fundamental solutions for anisotropic heat conduction problems, Eng. Anal. Bound. Elem. 119, 74 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Liu, P. W. Li, C. M. Fan, and Y. Gu, Localized method of fundamental solutions for two- and three-dimensional transient convection-diffusion-reaction equations, Eng. Anal. Bound. Elem. 124, 237 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  48. Q. **, Z. Fu, T. Rabczuk, and D. Yin, A localized collocation scheme with fundamental solutions for long-time anomalous heat conduction analysis in functionally graded materials, Int. J. Heat Mass Transfer 180, 121778 (2021).

    Article  Google Scholar 

  49. L. Qiu, J. Lin, Q. H. Qin, and W. Chen, Localized space-time method of fundamental solutions for three-dimensional transient diffusion problem, Acta Mech. Sin. 36, 1051 (2020).

    Article  MathSciNet  Google Scholar 

  50. Q. **, Z. Fu, W. Wu, H. Wang, and Y. Wang, A novel localized collocation solver based on Trefftz basis for potential-based inverse electromyography, Appl. Math. Comput. 390, 125604 (2021).

    MathSciNet  MATH  Google Scholar 

  51. Q. **, Z. Fu, C. Zhang, and D. Yin, An efficient localized Trefftz-based collocation scheme for heat conduction analysis in two kinds of heterogeneous materials under temperature loading, Comput. Struct. 255, 106619 (2021).

    Article  Google Scholar 

  52. C. S. Chen, C. A. Brebbia, and H. Power, Dual reciprocity method using compactly supported radial basis functions, Commun. Numer. Meth. Eng. 15, 137 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  53. M. A. Golberg, C. S. Chen, H. Bowman, and H. Power, Some comments on the use of radial basis functions in the dual reciprocity method, Comput. Mech. 22, 61 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  54. P. W. Partridge, C. Brebbia, and L. C. Wrobel, The Dual Reciprocity Boundary Element Method (Springer Science & Business Media, Berlin, 2012).

    MATH  Google Scholar 

  55. A. J. Nowak, and C. A. Brebbia, The multiple-reciprocity method. A new approach for transforming BEM domain integrals to the boundary, Eng. Anal. Bound. Elem. 6, 164 (1989).

    Article  Google Scholar 

  56. A. C. Neves, and C. A. Brebbia, The multiple reciprocity boundary element method in elasticity: A new approach for transforming domain integrals to the boundary, Int. J. Numer. Meth. Eng. 31, 709 (1991).

    Article  MATH  Google Scholar 

  57. X. Wei, A. Huang, L. Sun, and B. Chen, Multiple reciprocity singular boundary method for 3D inhomogeneous problems, Eng. Anal. Bound. Elem. 117, 212 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  58. E. L. Albuquerque, P. Sollero, and W. Portilho de Paiva, The radial integration method applied to dynamic problems of anisotropic plates, Commun. Numer. Meth. Eng. 23, 805 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  59. X. W. Gao, The radial integration method for evaluation of domain integrals with boundary-only discretization, Eng. Anal. Bound. Elem. 26, 905 (2002).

    Article  MATH  Google Scholar 

  60. K. Yang, and X. W. Gao, Radial integration BEM for transient heat conduction problems, Eng. Anal. Bound. Elem. 34, 557 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  61. Z. Q. Bai, Y. Gu, and C. M. Fan, A direct Chebyshev collocation method for the numerical solutions of three-dimensional Helmholtz-type equations, Eng. Anal. Bound. Elem. 104, 26 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  62. N. Flyer, B. Fornberg, V. Bayona, and G. A. Barnett, On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy, J. Comput. Phys. 321, 21 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  63. V. Bayona, M. Moscoso, M. Carretero, and M. Kindelan, RBF-FD formulas and convergence properties, J. Comput. Phys. 229, 8281 (2010).

    Article  MATH  Google Scholar 

  64. Z. J. Fu, Z. C. Tang, H. T. Zhao, P. W. Li, and T. Rabczuk, Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur. Phys. J. Plus 134, 272 (2019).

    Article  Google Scholar 

  65. W. Qu, and H. He, A spatial-temporal GFDM with an additional condition for transient heat conduction analysis of FGMs, Appl. Math. Lett. 110, 106579 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  66. Q. Zhao, C. M. Fan, F. Wang, and W. Qu, Topology optimization of steady-state heat conduction structures using meshless generalized finite difference method, Eng. Anal. Bound. Elem. 119, 13 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  67. Q. **, Z. Fu, Y. Li, and H. Huang, A hybrid GFDM-SBM solver for acoustic radiation and propagation of thin plate structure under shallow sea environment, J. Theor. Comp. Acout. 28, 2050008 (2020).

    Article  MathSciNet  Google Scholar 

  68. C. M. Fan, C. N. Chu, B. Šarler, and T. H. Li, Numerical solutions of waves-current interactions by generalized finite difference method, Eng. Anal. Bound. Elem. 100, 150 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  69. Z. J. Fu, Z. Y. **e, S. Y. Ji, C. C. Tsai, and A. L. Li, Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures, Ocean Eng. 195, 106736 (2020).

    Article  Google Scholar 

  70. T. Zhang, Y. J. Huang, L. Liang, C. M. Fan, and P. W. Li, Numerical solutions of mild slope equation by generalized finite difference method, Eng. Anal. Bound. Elem. 88, 1 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  71. W. Hu, Y. Gu, and C. M. Fan, A meshless collocation scheme for inverse heat conduction problem in three-dimensional functionally graded materials, Eng. Anal. Bound. Elem. 114, 1 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  72. W. Hu, Y. Gu, C. Zhang, and X. He, The generalized finite difference method for an inverse boundary value problem in three-dimensional thermo-elasticity, Adv. Eng. Software 131, 1 (2019).

    Article  Google Scholar 

  73. M. Chen, and L. Ling, Kernel-based collocation methods for heat transport on evolving surfaces, J. Comput. Phys. 405, 109166 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  74. M. Chen, and L. Ling, Kernel-based meshless collocation methods for solving coupled bulk-surface partial differential equations, J. Sci. Comput. 81, 375 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  75. J. Lin, C. S. Chen, F. Wang, and T. Dangal, Method of particular solutions using polynomial basis functions for the simulation of plate bending vibration problems, Appl. Math. Model. 49, 452 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  76. N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, The fast multipole method (FMM) for electromagnetic scattering problems, IEEE Trans. Antennas Propagat. 40, 634 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  77. L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura, Accelerating fast multipole methods for the Helmholtz equation at low frequencies, IEEE Comput. Sci. Eng. 5, 32 (1998).

    Article  Google Scholar 

  78. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems (MIT Press, Cambridge, 1988).

    Book  MATH  Google Scholar 

  79. S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math. 11, 193 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  80. J. A. Koupaei, M. Firouznia, and S. M. M. Hosseini, Finding a good shape parameter of RBF to solve PDEs based on the particle swarm optimization algorithm, Alexandria Eng. J. 57, 3641 (2018).

    Article  Google Scholar 

  81. A. Karageorghis, A. Noorizadegan, and C. S. Chen, Fictitious centre RBF method for high order BVPs in multiply connected domains, Appl. Math. Lett. 125, 107711 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  82. W. Chen, Y. Hong, and J. Lin, The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method, Comput. Math. Appl. 75, 2942 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  83. V. Bayona, N. Flyer, B. Fornberg, and G. A. Barnett, On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs, J. Comput. Phys. 332, 257 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  84. W. Y. Tey, N. A. C. Sidik, Y. Asako, M. W. Muhieldeen, and O. Afshar, Moving least squares method and its improvement: a concise review, J. Appl. Comput. Mech. 7, 883 (2021).

    Google Scholar 

  85. C. M. Fan, and P. W. Li, Generalized finite difference method for solving two-dimensional Burgers’ equations, Procedia Eng. 79, 55 (2014).

    Article  Google Scholar 

  86. Z. Tang, Z. Fu, M. Chen, and J. Huang, An efficient collocation method for long-time simulation of heat and mass transport on evolving surfaces, J. Comput. Phys. 463, 111310 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  87. C. Yang, D. Tang, and S. Atluri, Three-dimensional carotid plaque progression simulation using meshless generalized finite difference method based on multiyear MRI patient-tracking data, Comput. Model. Eng. Sci. 57, 51 (2010).

    MathSciNet  MATH  Google Scholar 

  88. D. Wang, D. Qi, and X. Li, Superconvergent isogeometric collocation method with Greville points, Comput. Methods Appl. Mech. Eng. 377, 113689 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  89. D. Qi, D. Wang, L. Deng, X. Xu, and C. T. Wu, Reproducing kernel mesh-free collocation analysis of structural vibrations, Eng. Comput. 36, 734 (2019).

    Article  Google Scholar 

  90. L. Deng, D. Wang, and D. Qi, A least squares recursive gradient meshfree collocation method for superconvergent structural vibration analysis, Comput. Mech. 68, 1063 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  91. J. S. Chen, W. Hu, and H. Y. Hu, Reproducing kernel enhanced local radial basis collocation method, Int. J. Numer. Meth. Eng. 75, 600 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  92. J. S. Chen, L. Wang, H. Y. Hu, and S. W. Chi, Subdomain radial basis collocation method for heterogeneous media, Int. J. Numer. Meth. Eng. 80, 163 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  93. D. Wang, J. Wang, and J. Wu, Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of Kirchhoff plates, Comput Mech 65, 877 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  94. S. Liu, Z. F. Null, and Y. Gu, Domain-decomposition localized method of fundamental solutions for large-scale heat conduction in anisotropic layered materials, Adv. Appl. Math. Mech. 14, 759 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  95. J. C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT Numer. Math. 16, 237 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  96. Z. A. Anastassi, and T. E. Simos, An optimized Runge-Kutta method for the solution of orbital problems, J. Comput. Appl. Math. 175, 1 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  97. A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT Numer. Math. 40, 241 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  98. R. Speck, D. Ruprecht, M. Emmett, M. Minion, M. Bolten, and R. Krause, A multi-level spectral deferred correction method, BIT Numer. Math. 55, 843 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  99. J. Huang, J. Jia, and M. Minion, Accelerating the convergence of spectral deferred correction methods, J. Comput. Phys. 214, 633 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  100. A. Bourlioux, A. T. Layton, and M. L. Minion, High-order multi-implicit spectral deferred correction methods for problems of reactive flow, J. Comput. Phys. 189, 651 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  101. J. Huang, J. Jia, and M. Minion, Arbitrary order Krylov deferred correction methods for differential algebraic equations, J. Comput. Phys. 221, 739 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  102. J. Jia, and J. Huang, Krylov deferred correction accelerated method of lines transpose for parabolic problems, J. Comput. Phys. 227, 1739 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  103. S. Bu, J. Huang, and M. Minion, Semi-implicit Krylov deferred correction methods for differential algebraic equations, Math. Comp. 81, 2127 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  104. R. Sridhar, S. Jeevananthan, S.S. Dash, and P. Vishnuram, A new maximum power tracking in PV system during partially shaded conditions based on shuffled frog leap algorithm, J. Exper. Theor. Artif. Intell. 29, 481 (2017).

    Article  Google Scholar 

  105. Z. J. Fu, W. Chen, and L. Ling, Method of approximate particular solutions for constant- and variable-order fractional diffusion models, Eng. Anal. Bound. Elem. 57, 37 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  106. P. P. Valkó, and J. Abate, Numerical inversion of 2-D Laplace transforms applied to fractional diffusion equations, Appl. Rumer. Math. 53, 73 (2005).

    MathSciNet  MATH  Google Scholar 

  107. P. H. Wen, and C. S. Chen, The method of particular solutions for solving scalar wave equations, Int. J. Numer. Meth. Biomed. Eng. 26, 1878 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  108. D. P. Gaver Jr., Observing stochastic processes, and approximate transform inversion, Operations Res. 14, 444 (1966).

    Article  MathSciNet  Google Scholar 

  109. M. Schanz, W. Ye, and J. **ao, Comparison of the convolution quadrature method and enhanced inverse FFT with application in elastodynamic boundary element method, Comput. Mech. 57, 523 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  110. D. A. Knoll, and D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches and applications, J. Comput. Phys. 193, 357 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  111. B. Cockburn, and C. W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16, 173 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  112. B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems, in: High-order methods for computational physics (Springer, Berlin, Heidelberg, Berlin, 1999), pp. 69–224.

    Chapter  MATH  Google Scholar 

  113. T. J. Ypma, Historical development of the Newton-Raphson method, SIAM Rev. 37, 531 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  114. P. W. Li, and C. M. Fan, Generalized finite difference method for two-dimensional shallow water equations, Eng. Anal. Bound. Elem. 80, 58 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  115. T. Zhang, Y. F. Ren, Z. Q. Yang, C. M. Fan, and P. W. Li, Application of generalized finite difference method to propagation of nonlinear water waves in numerical wave flume, Ocean Eng. 123, 278 (2016).

    Article  Google Scholar 

  116. T. Ohyama, S. Beji, K. Nadaoka, and J. A. Battjes, Experimental verification of numerical model for nonlinear wave evolutions, J. Waterway Port. Coastal Ocean Eng. 120, 637 (1994).

    Article  Google Scholar 

  117. Q. G. Liu, C. M. Fan, and B. Šarler, Localized method of fundamental solutions for two-dimensional anisotropic elasticity problems, Eng. Anal. Bound. Elem. 125, 59 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  118. Y. Gu, and C. Zhang, Novel special crack-tip elements for interface crack analysis by an efficient boundary element method, Eng. Fract. Mech. 239, 107302 (2020).

    Article  Google Scholar 

  119. Y. Ryoji, and C. Sang-Bong, Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials, Eng. Fract. Mech. 34, 179 (1989).

    Article  Google Scholar 

  120. Z. J. Fu, L. F. Li, D. S. Yin, and L. L. Yuan, A localized collocation solver based on T-complete functions for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals, Math. Comput. Appl. 26, 2 (2020).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12122205 and 11772119), and the Six Talent Peaks Project in Jiangsu Province of China (Grant No. 2019-KTHY-009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuojia Fu  (傅卓佳) or Zhuochao Tang  (汤卓超).

Additional information

Author contributions

Zhuochao Tang wrote the first draft of this review article and Zhuojia Fu revised the manuscript and approved the final version. The programmes of localized collocation methods including LRBFCM, GFDM, LMFS, LRTCM and LCTM were realized respectively by Zhuochao Tang, Zhuojia Fu, Qiang **, Qingguo Liu, Yan Gu and Fajie Wang. The visualizations are made by Zhuochao Tang. The research of LCMs for various applications in this paper is under the management and supervision of Zhuojia Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Tang, Z., **, Q. et al. Localized collocation schemes and their applications. Acta Mech. Sin. 38, 422167 (2022). https://doi.org/10.1007/s10409-022-22167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22167-x

Navigation