Log in

A numerical study of shock-interface interaction and prediction of the mixing zone growth in inhomogeneous medium

非均匀介质中激波-界面相互作用的数值研究以及混合区增长预测

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The growth of mixing zone on an interface induced by Richtmyer-Meshkov (RM) instability occurs frequently in natural phenomena and in engineering applications. Usually, the medium on which the RM instability happens is inhomogeneous, the effect of medium inhomogeneity on the growth of the mixing zone during the RM instability is still not clear. Therefore, it is necessary to investigate the RM instability in inhomogeneous medium. Based on a high-order computational scheme, the interactions of a density interface with an incident shock wave (ISW) in inhomogeneous medium are numerically simulated by solving the compressible Navier-Stokes equations. The effect of the inhomogeneity on the interface evolution after the passage of ISW through the interface is investigated. The results show that the interface morphology develops in a distinctive “spike-spike” structure in inhomogeneous medium. Particularly, the spike structure on the bottom of the interface is due to the reverse induction of RM instability by curved ISW or reflected shock wave. With the increase of inhomogeneity, the growth rate of the mixing zone width on interface increases, and the wave patterns caused by interaction between the shock wave and interface are more complex. Compared with RM instability in homogeneous medium, the inhomogeneous distribution of the density in medium further enhances the baroclinic effect and induces larger vorticity in flow field. Therefore, the interface is stretched much more significantly under the induction of enhanced vorticity in inhomogeneous medium. Based on above analyses, a model for predicting the growth of mixing zone width on the interface after the passage of ISW is proposed, in order to provide a useful method for evaluations of perturbation growth behavior during the RM instability in inhomogeneous medium.

摘要

Richtmyer-Meshkov (RM) 不稳定所诱导的界面混合区增长的现象在自然现象和工程应用中非常常见. 发生RM不稳定现象 的介质通常是非均匀的, 而在RM不稳定过程中介质非均匀性对混合区的增长的影响尚不清楚, 因此, 研究非均匀介质中的RM不稳 定现象是非常必要的. 本文基于高阶精度计算格式, 通过求解二维可压缩Navier-Stokes (NS) 方程, 数值模拟了非均匀介质中密度界 面与入射激波(ISW)的相互作用, 研究了入射激波通过界面后, 介质非均匀性对界面演化的影响. 研究结果表明: 在非均匀介质中, 界面以独特的“钉-钉”结构发展, 界面底部的“钉”结构是弯曲入射激波(CISW)或反射激波(RSW)与界面相互作用后产生的RM不稳 定反向诱导所导致的. 随着非均匀性的增大, 界面混合区宽度的增长速率逐渐增大, 激波与界面相互作用引起的波系结构更为复 杂. 与均匀介质中的RM不稳定过程相比, 介质密度的非均匀分布进一步增**了斜压效应, 导致流场中沉积更大量级的涡量. 因此, 在非均匀介质中, **化的涡量的诱导作用使得界面更大程度被拉伸. 在上述分析的基础上, 本文提出了一个预测入射激波通过界面 后, 界面混合区宽度增长的模型, 这为评估非均匀介质下RM不稳定过程中的扰动增长行为提供了一种有效的方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. _R. D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Comm. Pure Appl. Math. 13, 297 (1960).

    Article  MathSciNet  Google Scholar 

  2. _E. E. Meshkov, Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn. 4, 101 (1969).

    Article  Google Scholar 

  3. _A. Y. Poludnenko, J. Chambers, K. Ahmed, V. N. Gamezo, and B. D. Taylor, A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae, Science 366, aau7365 (2019).

    Article  Google Scholar 

  4. _J. Yang, T. Kubota, and E. E. Zukoski, Applications of shock-induced mixing to supersonic combustion, AIAA J. 31, 854 (1994).

    Article  Google Scholar 

  5. _J. Lindl, O. Landen, J. Edwards, and E. Moses, Review of the national ignition campaign 2009–2012, Phys. Plasmas 21, 020501 (2014).

    Article  Google Scholar 

  6. _E. S. Oran, and V. N. Gamezo, Origins of the deflagration-to-detonation transition in gas-phase combustion, Combust. Flame 148, 4 (2007).

    Article  Google Scholar 

  7. _B. D. Collins, and J. W. Jacobs, PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface, J. Fluid Mech. 464, 113 (2002).

    Article  Google Scholar 

  8. _D. Layzer, On the instability of superposed fluids in a gravitational field., Astrophys. J. 122, 1 (1955).

    Article  MathSciNet  Google Scholar 

  9. _V. N. Goncharov, Analytical model of nonlinear, single-mode, classical rayleigh-taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett. 88, 134502 (2002).

    Article  Google Scholar 

  10. Q. Zhang, and W. Guo, Universality of finger growth in two-dimensional Rayleigh-Taylor and Richtmyer-Meshkov instability, J. Fluid Mech. 853, R2 (2018).

    Article  Google Scholar 

  11. O. Sadot, L. Erez, U. Alon, D. Oron, L. A. Levin, G. Erez, G. Ben-Dor, and D. Shvarts, Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability, Phys. Rev. Lett. 80, 1654 (1998).

    Article  Google Scholar 

  12. K. O. Mikaelian, Turbulent mixing generated by Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. D-Nonlinear Phenom. 36, 343 (1989).

    Article  MathSciNet  Google Scholar 

  13. K. O. Mikaelian, Extended model for Richtmyer-Meshkov mix, Phys. D-Nonlinear Phenom. 240, 935 (2011).

    Article  Google Scholar 

  14. P. R. Chapman, and J. W. Jacobs, Experiments on the three-dimensional incompressible Richtmyer-Meshkov instability, Phys. Fluids 18, 074101 (2006).

    Article  Google Scholar 

  15. C. C. Long, V. V. Krivets, J. A. Greenough, and J. W. Jacobs, Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer-Meshkov instability, Phys. Fluids 21, 114104 (2009).

    Article  Google Scholar 

  16. M. Vetter, and B. Sturtevant, Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface, Shock Waves 4, 247 (1995).

    Article  Google Scholar 

  17. L. Erez, O. Sadot, D. Oron, G. Erez, L. A. Levin, D. Shvarts, and G. Ben-Dor, Study of the membrane effect on turbulent mixing measurements in shock tubes, Shock Waves 10, 241 (2000).

    Article  Google Scholar 

  18. Y. Liang, Z. Zhai, J. Ding, and X. Luo, Richtmyer-Meshkov instability on a quasi-single-mode interface, J. Fluid Mech. 872, 729 (2019).

    Article  Google Scholar 

  19. X. Luo, L. Liu, Y. Liang, J. Ding, and C. Wen, Richtmyer-Meshkov instability on a dual-mode interface, J. Fluid Mech. 905, A5 (2020).

    Article  MathSciNet  Google Scholar 

  20. Y. Liang, L. Liu, Z. Zhai, J. Ding, T. Si, and X. Luo, Richtmyer-Meshkov instability on two-dimensional multi-mode interfaces, J. Fluid Mech. 928, A37 (2021).

    Article  Google Scholar 

  21. Y. Liang, and X. Luo, On shock-induced light-fluid-layer evolution, J. Fluid Mech. 933, A10 (2022).

    Article  Google Scholar 

  22. Y. Liang, and X. Luo, On shock-induced heavy-fluid-layer evolution, J. Fluid Mech. 920, A13 (2021).

    Article  MathSciNet  Google Scholar 

  23. Y. Liang, and X. Luo, Shock-induced dual-layer evolution, J. Fluid Mech. 929, R3 (2021).

    Article  Google Scholar 

  24. H. Jiang, G. Dong, X. Chen, and J. T. Wu, Numerical simulations of the process of multiple shock-flame interactions, Acta Mech. Sin. 32, 659 (2016).

    Article  Google Scholar 

  25. H. Jiang, G. Dong, X. Chen, and B. Li, A parameterization of the Richtmyer-Meshkov instability on a premixed flame interface induced by the successive passages of shock waves, Combust. Flame 169, 229 (2016).

    Article  Google Scholar 

  26. Y. Zhu, Z. Yang, K. H. Luo, J. Pan, and Z. Pan, Numerical investigation of planar shock wave im**ing on spherical gas bubble with different densities, Phys. Fluids 31, 056101 (2019).

    Article  Google Scholar 

  27. J. Tang, F. Zhang, X. Luo, and Z. Zhai, Effect of Atwood number on convergent Richtmyer-Meshkov instability, Acta Mech. Sin. 37, 434 (2021).

    Article  MathSciNet  Google Scholar 

  28. B. Thornber, D. Drikakis, D. L. Youngs, and R. J. R. Williams, Physics of the single-shocked and reshocked Richtmyer-Meshkov instability, J. Turbul. 13, N10 (2012).

    Article  MathSciNet  Google Scholar 

  29. B. Guan, D. Wang, G. Wang, E. Fan, and C. Y. Wen, Numerical study of the Richtmyer-Meshkov instability of a three-dimensional minimum-surface featured SF6/air interface, Phys. Fluids 32, 024108 (2020).

    Article  Google Scholar 

  30. D. S. Balsara, and C. W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys. 160, 405 (2000).

    Article  MathSciNet  Google Scholar 

  31. J. Shi, Y. T. Zhang, and C. W. Shu, Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys. 186, 690 (2003).

    Article  MathSciNet  Google Scholar 

  32. X. Chen, G. Dong, and B. Li, Numerical study of three-dimensional developments of premixed flame induced by multiple shock waves, Acta Mech. Sin. 34, 1035 (2018).

    Article  MathSciNet  Google Scholar 

  33. K. O. Mikaelian, Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers, Phys. Rev. E 67, 026319 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11872213).

Author information

Authors and Affiliations

Authors

Contributions

Yang Wang and Gang Dong designed the research. Yang Wang wrote the first draft of the manuscript. Yang Wang carried out the numerical simulation and processed the data. Gang Dong helped organize the manuscript. Yang Wang and Gang Dong revised and edited the final version.

Corresponding author

Correspondence to Gang Dong  (董刚).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Dong, G. A numerical study of shock-interface interaction and prediction of the mixing zone growth in inhomogeneous medium. Acta Mech. Sin. 38, 122163 (2022). https://doi.org/10.1007/s10409-022-22163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22163-x

Navigation