Log in

Magnetic-structure coupling dynamic model of a ferromagnetic plate parallel moving in air-gap magnetic field

气隙磁场作用**行运动铁磁板磁固耦合动力学模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Aiming at the air-gap magnetic field excited by wall armatures, Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory. According to the magnetic boundary conditions and the method of separation of variables, the magnetic potential of the air-gap magnetic field is obtained. Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures, and introducing the electromagnetic constitutive relations and boundary conditions, the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established. Considering geometric nonlinearity, expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given, respectively. The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle, which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction. Through numerical examples, primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained. The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases, and the amplitude’s multi-valued region will change due to the varieties of magnetic potential, air-gap and velocity. The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields.

摘要

针对壁面电枢激发气隙磁场问题, 基于电磁场理论给出气隙域磁势满足的拉普拉斯偏微分方程; 根据磁边界条件并应用分 离变量法求解二维拉普拉斯方程, 得到气隙域磁势通解. 基于铁磁薄壁体的磁化力模型和洛伦兹力表述式, 考虑电磁本构关系和边 界条件, 建立气隙磁场中面内运动软铁磁薄板的电磁力计算模型. 考虑几何非线性条件, 给出弹性薄板的应变能、动能和力所做功 的表达式. 根据哈密顿变分原理, 建立电枢激发气隙磁场环境中**行运动铁磁性薄板的磁固耦合非线性振动方程组, 得出描述系统 力、电、磁、速度等多参量相互耦合的动力学理论模型. 通过算例, 得出气隙磁力作用下条形薄板的主共振特征规律, 结果表明: 磁势幅值的增大和气隙厚度的减小都会使两个稳定振幅值增大, 磁势、气隙和速度量的改变均会使振幅的多解区域范围发生变化. 所建模型可为研究复杂电磁场环境中运动结构的多场耦合动力学行为提供理论参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Moon, Magneto-Solid Mechanics (Wiley, New York, 1984).

    Google Scholar 

  2. F. C. Moon, and Y. H. Pao, Magnetoelastic buckling of a thin plate, J. Appl. Mech. 35, 53 (1968).

    Article  Google Scholar 

  3. Y. H. Zhou, and X. J. Zheng, Electromagnetic Solid Mechanics (in Chinese). (Science Press, Bei**g, 1999).

    Google Scholar 

  4. S. A. Ambarcumian, G. E. Bagdasarian, and M. V. Belubekian, Magnetoelasticy of thin shells and plates, (Science, Moscow, 1977).

    Google Scholar 

  5. K. Miya, K. Hara, and K. Someya, Experimental and theoretical study on magnetoelastic buckling of a ferromagnetic cantilevered beam-plate, J. Appl. Mech. 45, 355 (1978).

    Article  Google Scholar 

  6. X. Wang, J. S. Lee, and X. Zheng, Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields, Int. J. Solids Struct. 40, 6125 (2003).

    Article  Google Scholar 

  7. B. Pratiher, Non-linear response of a magneto-elastic translating beam with prismatic joint for higher resonance conditions, Int. J. Non-Linear Mech. 46, 685 (2011).

    Article  Google Scholar 

  8. S. A. Mohajerant, A. Mohammadzadeh, and M. N. Bahramt, An exact solution for vibration analysis of soft ferromagnetic rectangular plates under the influence of magnetic field with levy type boundary conditions, J. Solid Mech. 9, 186 (2017).

    Google Scholar 

  9. Y. Gao, B. Xu, and H. Huh, Electromagneto-thermo-mechanical behaviors of conductive circular plate subject to time-dependent magnetic fields, Acta Mech. 210, 99 (2010).

    Article  Google Scholar 

  10. Y. D. Hu, and T. Wang, Nonlinear free vibration of a rotating circular plate under the static load in magnetic field, Nonlinear Dyn. 85, 1825 (2016).

    Article  Google Scholar 

  11. Y. D. Hu, and W. Q. Li, Magnetoelastic axisymmetric multi-modal resonance and Hopf bifurcation of a rotating circular plate under aerodynamic load, Nonlinear Dyn. 97, 1295 (2019).

    Article  Google Scholar 

  12. M. Mikilyan, and P. Marzocca, Dynamic instability of electro-conductive cylindrical shell in a magnetic field, Int. J. Solids Struct. 160, 168 (2019).

    Article  Google Scholar 

  13. J. J. Qiu, Nonlinear vibration on coupled mechanical and electric dynamic systems (in Chinese). (Science Press, Bei**g, 1996).

    Google Scholar 

  14. H. Ha, J. Park, and K. S. Park, Advanced numerical analysis for vibration characteristics and ride comfort of ultra-high-speed maglev train, Microsyst. Technol. 26, 183 (2020).

    Article  Google Scholar 

  15. G. Liu, and Y. Chen, Levitation force analysis of medium and low speed maglev vehicles, J. Mod. Transp. 20, 93 (2012).

    Article  Google Scholar 

  16. M. H. Ghayesh, M. Amabili, and M. P. Païdoussis, Nonlinear dynamics of axially moving plates, J. Sound Vib. 332, 391 (2013).

    Article  Google Scholar 

  17. S. Hatami, H. R. Ronagh, and M. Azhari, Exact free vibration analysis of axially moving viscoelastic plates, Comput. Struct. 86, 1738 (2008).

    Article  Google Scholar 

  18. Y. F. Zhou, and Z. M. Wang, Dynamic instability of axially moving viscoelastic plate, Eur. J. Mech.-A Solids 73, 1 (2019).

    Article  MathSciNet  Google Scholar 

  19. K. Marynowski, Free vibration analysis of an axially moving multi-scale composite plate including thermal effect, Int. J. Mech. Sci. 120, 62 (2017).

    Article  Google Scholar 

  20. Y. D. Hu, P. Hu, and J. Z. Zhang, Strongly nonlinear subharmonic resonance and chaotic motion of axially moving thin plate in magnetic field, J. Comput. Nonlinear Dyn. 10, 021010 (2015).

    Article  Google Scholar 

  21. Y. Hu, and J. Wang, Principal-internal resonance of an axially moving current-carrying beam in magnetic field, Nonlinear Dyn. 90, 683 (2017).

    Article  Google Scholar 

  22. H. Ding, Y. Q. Tang, and L. Q. Chen, Frequencies of transverse vibration of an axially moving viscoelastic beam, J. Vib. Control 23, 3504 (2017).

    Article  MathSciNet  Google Scholar 

  23. H. Ding, and L. Q. Chen, Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams, Acta Mech. Sin. 27, 426 (2011).

    Article  MathSciNet  Google Scholar 

  24. Y. Q. Tang, and Z. G. Ma, Nonlinear vibration of axially moving beams with internal resonance, speed-dependent tension, and tension-dependent speed, Nonlinear Dyn. 98, 2475 (2019).

    Article  Google Scholar 

  25. Y. H. Li, Y. H. Dong, Y. Qin, and H. W. Lv, Nonlinear forced vibration and stability of an axially moving viscoelastic sandwich beam, Int. J. Mech. Sci. 138–139, 131 (2018).

    Article  Google Scholar 

  26. M. Yao, W. Zhang, and J. W. Zu, Multi-pulse chaotic dynamics in non-planar motion of parametrically excited viscoelastic moving belt, J. Sound Vib. 331, 2624 (2012).

    Article  Google Scholar 

  27. W. D. **e, X. F. Gao, and W. H. Xu, Stability and nonlinear vibrations of a flexible pipe parametrically excited by an internal varying flow density, Acta Mech. Sin. 36, 206 (2020).

    Article  MathSciNet  Google Scholar 

  28. T. Tan, Z. Yan, K. Ma, F. Liu, L. Zhao, and W. Zhang, Nonlinear characterization and performance optimization for broadband bistable energy harvester, Acta Mech. Sin. 36, 578 (2020).

    Article  MathSciNet  Google Scholar 

  29. Z. Zhang, H. Ding, Y. W. Zhang, and L. Q. Chen, Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks, Acta Mech. Sin. 37, 387 (2021).

    Article  MathSciNet  Google Scholar 

  30. A. H. Nayfeh, and D. T. Mook, Nonlinear Oscillations (Wiley, New York, 1979).

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12172321 and 11472239) and the Hebei Provincial Natural Science Foundation of China (Grant No. A2020203007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuda Hu  (胡宇达).

Additional information

Author contributions

Yuda Hu performed conceptualization, methodology, and investigation. Tianxiao Cao designed computer programs and contributed to visualization. Mengxue **e wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Cao, T. & **e, M. Magnetic-structure coupling dynamic model of a ferromagnetic plate parallel moving in air-gap magnetic field. Acta Mech. Sin. 38, 522084 (2022). https://doi.org/10.1007/s10409-022-22084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22084-x

Navigation