Log in

Study of 3D self-propulsive fish swimming using the δ+-SPH model

基于δ+-SPH模型的三维鱼自主游动问题研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The bio-inspired propulsion facilitates the design of underwater vehicles because it benefits both the hydrodynamic performance and endurance of the underwater robots. This work is dedicated to investigating the fluid-structure interaction (FSI) of a three-dimensional (3D) self-propulsive anguilliform swimmer using the smoothed particle hydrodynamics (SPH) method. To this end, the δ+-SPH model incorporating with the techniques of tensile instability control (TIC) and adaptive particle refinement (APR) is adopted. Firstly, to validate the accuracy and stability of the present SPH model, viscous flows past 3D sphere are simulated and validated. After that, the 3D fish-liking swimming problem is simulated and the velocity of body center is compared with the reference result. Further, the comparison of the two-dimensional (2D) and 3D self-propulsive swimming problem shows that the longitudinal velocity and vorticity field are in large discrepancy. In addition, the vortex structure of the 3D fish’s wake is visualized and discussed in detail. It is demonstrated that the present 3D δ+-SPH model can be regarded as a reliable approach to investigate such bionic hydrodynamic problem close to a real fish.

摘要

仿生推进研究对水下潜器的水动力性能和续航能力提升具有重要意义. 为此, 本文采用光滑粒子流体动力学(Smoothed ParticleHydrodynamics, SPH) 方法研究了三维鱼自主游动的流固耦合(fluid-structure interaction, FSI)问题. 为提高SPH模型的计算精度和效率,文中采用了δ+-SPH模型并结合了张力不稳定控制技术(tensile instability control, TIC)和自适应粒子细化(adaptive particle refinement,APR)算法等. 计算结果部分, 为了验证SPH结果的精度和稳定性, 首先采用三维球体绕流基准算例进行验证, 随后将三维鱼游动速度与文献结果进行对比. 通过比较二维和三维鱼自主推进的结果发现, 两者预报的游动速度和涡量场均存在较大差异, 凸显了三维研究的必要性. 此外, 本文对三维鱼尾流的涡结构进行了可视化, 并展开详细讨论. 结果表明, 本文所建立的三维δ+-SPH模型为研究真实鱼类的仿生水动力性能提供了一种新的可靠手段. 黄晓婷, 孙鹏楠, 吕鸿冠, 钟诗蕴

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gray, Studies in animal locomotion, J. Exp. Biol. 10, 386 (1933).

    Article  Google Scholar 

  2. I. Borazjani, and F. Sotiropoulos, Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes, J. Exp. Biol. 212, 576 (2009).

    Article  Google Scholar 

  3. M. S. U. Khalid, J. Wang, I. Akhtar, H. Dong, M. Liu, and A. Hemmati, Why do anguilliform swimmers perform undulation with wavelengths shorter than their bodylengths? Phys. Fluids 33, 031911 (2021).

    Article  Google Scholar 

  4. H. Feng, Y. Sun, P. A. Todd, and H. P. Lee, Body wave generation for anguilliform locomotion using a fiber-reinforced soft fluidic elastomer actuator array toward the development of the eel-inspired underwater soft robot, Soft Robotics 7, 233 (2020).

    Article  Google Scholar 

  5. I. Borazjani, and F. Sotiropoulos, On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming, J. Exp. Biol. 213, 89 (2010).

    Article  Google Scholar 

  6. S. Kern, P. Chatelain, and P. Koumoutsakos, Reverse engineering of self-propelled anguilliform swimmers, Adv. Sci. Technol. 58, 203 (2008).

    Article  Google Scholar 

  7. C. H. Zhou, and C. Shu, Simulation of self-propelled anguilliform swimming by local domain-free discretization method, Int. J. Numer. Meth. Fluids 69, 1891 (2012).

    Article  MathSciNet  Google Scholar 

  8. J. N. Newman, The force on a slender fish-like body, J. Fluid Mech. 58, 689 (1973).

    Article  MATH  Google Scholar 

  9. J. Y. Cheng, L. X. Zhuang, and B. G. Tong, Analysis of swimming three-dimensional waving plates, J. Fluid Mech. 232, 341 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Y. T. Wu, Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid, J. Fluid Mech. 46, 337 (1971).

    Article  MATH  Google Scholar 

  11. T. Y. T. Wu, Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins, J. Fluid Mech. 46, 545 (1971).

    Article  MATH  Google Scholar 

  12. E. G. Drucker, and G. V. Lauder, Locomotor function of the dorsal fin in rainbow trout: Kinematic patterns and hydrodynamic forces, J. Exp. Biol. 208, 4479 (2005).

    Article  Google Scholar 

  13. E. G. Drucker, and G. V. Lauder, Wake dynamics and fluid forces of turning maneuvers in sunfish, J. Exp. Biol. 204, 431 (2001).

    Article  Google Scholar 

  14. B. Ahlborn, S. Chapman, R. Stafford, and R. Harper, Experimental simulation of the thrust phases of fast-start swimming of fish, J. Exp. Biol. 200, 2301 (1997).

    Article  Google Scholar 

  15. C. E. Willert, and M. Gharib, Digital particle image velocimetry, Exp. Fluids 10, 181 (1991).

    Article  Google Scholar 

  16. J. T. Horstmann, P. Henningsson, A. L. R. Thomas, and R. J. Bomphrey, Wake development behind paired wings with tip and root trailing vortices: Consequences for animal flight force estimates, PLoS ONE 9, e91040 (2014).

    Article  Google Scholar 

  17. E. D. Tytell, Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies, Exp. Fluids 43, 701 (2007).

    Article  Google Scholar 

  18. G. V. Lauder, Fish locomotion: Recent advances and new directions, Annu. Rev. Mar. Sci. 7, 521 (2015).

    Article  Google Scholar 

  19. M. M. Koochesfahani, Vortical patterns in the wake of an oscillating airfoil, AIAA J. 27, 1200 (1989).

    Article  Google Scholar 

  20. S. Kern, and P. Koumoutsakos, Simulations of optimized anguilliform swimming, J. Exp. Biol. 209, 4841 (2006).

    Article  Google Scholar 

  21. A. Leroyer, and M. Visonneau, Numerical methods for RANSE simulations of a self-propelled fish-like body, J. Fluids Struct. 20, 975 (2005).

    Article  Google Scholar 

  22. R. A. Gingold, and J. J. Monaghan, Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Mon. Not. R. Astron. Soc. 181, 375 (1977).

    Article  MATH  Google Scholar 

  23. T. Ye, D. Pan, C. Huang, and M. Liu, Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications, Phys. Fluids 31, 011301 (2019).

    Article  Google Scholar 

  24. M. Luo, A. Khayyer, and P. Lin, Particle methods in ocean and coastal engineering, Appl. Ocean Res. 114, 102734 (2021).

    Article  Google Scholar 

  25. M. Liu, and Z. Zhang, Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions, Sci. China-Phys. Mech. Astron. 62, 984701 (2019).

    Article  Google Scholar 

  26. Z. F. Meng, A. M. Zhang, J. L. Yan, P. P. Wang, and A. Khayyer, A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method, Comput. Methods Appl. Mech. Eng. 390, 114522 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. K. Li, A. M. Zhang, Y. X. Peng, and F. R. Ming, An improved model for compressible multiphase flows based on Smoothed Particle Hydrodynamics with enhanced particle regeneration technique, J. Comput. Phys. 458, 111106 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  28. Q. Yang, F. Xu, Y. Yang, J. Wang, A. Wang, and C. Ma, Numerical study on the dynamic characteristics of water entry of cavity body using two-phase SPH method, Acta Mech. Sin. 37, 1072 (2021).

    Article  MathSciNet  Google Scholar 

  29. X. Dong, J. Liu, S. Liu, and Z. Li, Quasi-static simulation of droplet morphologies using a smoothed particle hydrodynamics multiphase model, Acta Mech. Sin. 35, 32 (2019).

    Article  MathSciNet  Google Scholar 

  30. Y. X. Peng, A. M. Zhang, and F. R. Ming, Particle regeneration technique for smoothed particle hydrodynamics in simulation of compressible multiphase flows, Comput. Methods Appl. Mech. Eng. 376, 113653 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Chen, A. M. Zhang, J. Q. Chen, and Y. M. Shen, SPH simulations of water entry problems using an improved boundary treatment, Ocean Eng. 238, 109679 (2021).

    Article  Google Scholar 

  32. Y. X. Peng, A. M. Zhang, and F. R. Ming, Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM, Ocean Eng. 222, 108576 (2021).

    Article  Google Scholar 

  33. Z. F. Meng, A. M. Zhang, P. P. Wang, F. R. Ming, and B. C. Khoo, A targeted essentially non-oscillatory (TENO) SPH method and its applications in hydrodynamics, Ocean Eng. 243, 110100 (2022).

    Article  Google Scholar 

  34. A. M. A. Nasar, G. Fourtakas, S. J. Lind, J. R. C. King, B. D. Rogers, and P. K. Stansby, High-order consistent SPH with the pressure projection method in 2-D and 3-D, J. Comput. Phys. 444, 110563 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  35. P. P. Wang, A. M. Zhang, Z. F. Meng, F. R. Ming, and X. L. Fang, A new type of WENO scheme in SPH for compressible flows with discontinuities, Comput. Methods Appl. Mech. Eng. 381, 113770 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Wang, A. M. Zhang, F. Ming, P. Sun, and H. Cheng, A novel non-reflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics, J. Fluid Mech. 860, 81 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. X. Peng, A. M. Zhang, and S. P. Wang, Coupling of WCSPH and RKPM for the simulation of incompressible fluid-structure interactions, J. Fluids Struct. 102, 103254 (2021).

    Article  Google Scholar 

  38. J. J. Monaghan, Smoothed particle hydrodynamics and its diverse applications, Annu. Rev. Fluid Mech. 44, 323 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  39. J. B. Kajtar, and J. J. Monaghan, On the dynamics of swimming linked bodies, Eur. J. Mech.-B Fluids 29, 377 (2010), ar**v: 0911.2050.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Kajtar, and J. J. Monaghan, SPH simulations of swimming linked bodies, J. Comput. Phys. 227, 8568 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  41. P. N. Sun, A. Colagrossi, and A. M. Zhang, Numerical simulation of the self-propulsive motion of a fishlike swimming foil using the δ+-SPH model, Theor. Appl. Mech. Lett. 8, 115 (2018).

    Article  Google Scholar 

  42. A. Rahmat, H. Nasiri, M. Goodarzi, and E. Heidaryan, Numerical investigation of anguilliform locomotion by the SPH method, Int. J. Numer. Methods Heat Fluid Flow 30, 328 (2019).

    Article  Google Scholar 

  43. C. Zhang, M. Rezavand, and X. Hu, A multi-resolution SPH method for fluid-structure interactions, J. Comput. Phys. 429, 110028 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Zhu, C. Zhang, and X. Hu, A consistency-driven particle-advection formulation for weakly-compressible smoothed particle hydrodynamics, Comput. Fluids 230, 105140 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  45. I. Borazjani, and F. Sotiropoulos, Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes, J. Exp. Biol. 211, 1541 (2008).

    Article  Google Scholar 

  46. R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. von Loebbecke, A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys. 227, 4825 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  47. P. N. Sun, A. Colagrossi, S. Marrone, and A. M. Zhang, The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme, Comput. Methods Appl. Mech. Eng. 315, 25 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  48. P. N. Sun, A. Colagrossi, D. Le Touzé, and A. M. Zhang, Extension of the δ-SPH model for simulating Vortex-Induced-Vibration problems, J. Fluids Struct. 90, 19 (2019).

    Article  Google Scholar 

  49. M. Antuono, A. Colagrossi, S. Marrone, and D. Molteni, Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Commun. 181, 532 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Marrone, A. Colagrossi, M. Antuono, C. Lugni, and M. P. Tulin, A 2D+t SPH model to study the breaking wave pattern generated by fast ships, J. Fluids Struct. 27, 1199 (2011).

    Article  Google Scholar 

  51. P. N. Sun, D. Le Touzé, G. Oger, and A. M. Zhang, An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions, Ocean Eng. 221, 108552 (2021).

    Article  Google Scholar 

  52. P. N. Sun, A. Colagrossi, S. Marrone, M. Antuono, and A. M. Zhang, Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows, Comput. Phys. Commun. 224, 63 (2018).

    Article  MathSciNet  Google Scholar 

  53. I. Federico, S. Marrone, A. Colagrossi, F. Aristodemo, and M. Antuono, Simulating 2D open-channel flows through an SPH model, Eur. J. Mech.-B Fluids 34, 35 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Adami, X. Y. Hu, and N. A. Adams, A generalized wall boundary condition for smoothed particle hydrodynamics, J. Comput. Phys. 231, 7057 (2012).

    Article  MathSciNet  Google Scholar 

  55. F. Macia, M. Antuono, L. M. Gonzalez, and A. Colagrossi, Theoretical analysis of the no-slip boundary condition enforcement in SPH methods, Prog. Theor. Phys. 125, 1091 (2011).

    Article  MATH  Google Scholar 

  56. B. Bouscasse, A. Colagrossi, S. Marrone, and M. Antuono, Nonlinear water wave interaction with floating bodies in SPH, J. Fluids Struct. 42, 112 (2013).

    Article  Google Scholar 

  57. B. Fornberg, Steady viscous flow past a sphere at high Reynolds numbers, J. Fluid Mech. 190, 471 (1988).

    Article  Google Scholar 

  58. E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161, 35 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  59. T. A. Johnson, and V. C. Patel, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech. 378, 19 (1999).

    Article  Google Scholar 

  60. J. Kim, D. Kim, and H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys. 171, 132 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Crivellini, V. D’Alessandro, and F. Bassi, Assessment of a high-order discontinuous Galerkin method for incompressible three-dimensional Navier-Stokes equations: Benchmark results for the flow past a sphere up to Re = 500, Comput. Fluids 86, 442 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  62. S. Marrone, A. Colagrossi, D. Le Touzé, and G. Graziani, Fast free-surface detection and level-set function definition in SPH solvers, J. Comput. Phys. 229, 3652 (2010).

    Article  MATH  Google Scholar 

  63. J. Carling, T. L. Williams, and G. Bowtell, Self-propelled anguilliform swimming: Simultaneous solution of the two-dimensional navier-stokes equations and Newton’s laws of motion, J. Exp. Biol. 201, 3143 (1998).

    Article  Google Scholar 

  64. Y. Zhu, C. Zhang, Y. Yu, and X. Hu, A CAD-compatible body-fitted particle generator for arbitrarily complex geometry and its application to wave-structure interaction, J. Hydrodyn. 33, 195 (2021).

    Article  Google Scholar 

  65. W. T. Liu, P. N. Sun, F. R. Ming, and A. M. Zhang, Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH, Acta Mech. Sin. 34, 601 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  66. L. Chiron, G. Oger, M. de Leffe, and D. Le Touzé, Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations, J. Comput. Phys. 354, 552 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  67. F. Frenet, Sur les courbes á double courbure, J. Math. Pures Appl. 17, 437 (1852).

    Google Scholar 

  68. M. Gazzola, P. Chatelain, W. M. van Rees, and P. Koumoutsakos, Simulations of single and multiple swimmers with non-divergence free deforming geometries, J. Comput. Phys. 230, 7093 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  69. X. T. Huang, P. N. Sun, H. G. Lyu, and A. M. Zhang, Numerical investigations on bionic propulsion problems using the multi-resolution Delta-plus SPH model, Eur. J. Mech.-B Fluids 95, 106 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  70. S. E. Hieber, and P. Koumoutsakos, An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers, J. Comput. Phys. 227, 8636 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  71. A. Colagrossi, S. Marrone, P. Colagrossi, and D. Le Touzé, Da vinci’s observation of turbulence: A french-italian study aiming at numerically reproducing the physics behind one of his drawings, 500 years later, Phys. Fluids 33, 115122 (2021).

    Article  Google Scholar 

  72. J. C. Hunt, A. A. Wray, and P. Moin, Eddies, streams, and convergence zones in turbulent flows, Studying Turbulence Using Numerical Simulation Databases, 2: Proceedings of the 1988 Summer Program, 1988.

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province (Grant No. 2022A1515012084), the National Natural Science Foundation of China (Grant No. 51679053), and the Guangzhou Basic and Applied Basic Research Project (Grant No. 202102020371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Nan Sun.

Additional information

Author contributions

**ao-Ting Huang contributed in roles of formal analysis, validation, investigation, visualization, writing original draft. Peng-Nan Sun contributed in roles of conceptualization, methodology, software, resources, data curation, supervision, funding acquisition, writing review and editing. Hong-Guan Lyu contributed in roles of investigation, writing review and editing. Shi-Yun Zhong contributed in roles of writing review, editing and visualization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XT., Sun, PN., Lyu, HG. et al. Study of 3D self-propulsive fish swimming using the δ+-SPH model. Acta Mech. Sin. 39, 722053 (2023). https://doi.org/10.1007/s10409-022-22053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22053-x

Navigation