Log in

Experimental study of the high-frequency instability in the hypersonic boundary layer over a cone at 6° angle of attack

6°攻角圆锥边界层中的高频不稳定性实验研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The high-frequency instability on a cone at 6° angle of attack is measured in a hypersonic quiet wind tunnel with Reynolds number of 6.90 × 106 m−1, and Mach number is 6. Fast-response pressure sensors are used to measure the disturbance waves on the surface of the cone. The nano-tracer-based planar laser scattering (NPLS) technique is used to visualize the coherent structures of the three-dimensional boundary layer. At the plane of azimuthal angle of θ = 30° from the leeward ray, low- and high-frequency disturbance waves with the characteristic frequency of f = 10–20 kHz and f = 120–140 kHz are detected. From the NPLS image, the regular large-scale traveling crossflow waves structures are observed, which are related to the low-frequency instability. On the top of the traveling crossflow waves, there are a series of small-scale structures, which suggests there is strong shear on the top of the traveling crossflow waves. These small vortices likely are the secondary instability of the traveling crossflow waves, which are associated with the high-frequency instability. The disturbance waves characteristics in different planes are measured using PCB transducers. The result shows that the high-frequency instability occurs in the planes of θ = 15°-60°, and the characteristic frequency is between f = 106.97-181.08 kHz. With the increase of azimuthal angle, the characteristic frequency increases obviously, which is related to the thinner boundary layer near the windward side. With the increase of the x-coordinate, the circumferential range of the high-frequency instability gradually widens.

摘要

本文在马赫6静风洞中对6◦攻角圆锥边界层中的高频不稳定性进行了研究, 实验的单位雷诺数是6:90 × 106 m−1. 使 用Kulite和PCB脉动压力传感器测量了圆锥壁面的高频脉动压力信号, 并使用基于纳米示踪的**面激光散射(NPLS)技术对三维边界层 中的相干结构进行测量. 结果表明, 在圆锥背风面存在低频和高频的扰动波信号, 特征频率分别为10-20 kHz和120-140 kHz.由NPLS结 果可知, 低频信号对应行进横流波结构, 高频信号位于行进横流波结构的顶部, 为行进横流波的二次不稳定性. 另外, 使用PCB传感器 阵列对高频不稳定性的频率和幅值增长特性进行了研究, 得到了高频不稳定性的幅值增长云图.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Schneider, Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies, Prog. Aerospace Sci. 40, 1 (2004).

    Article  Google Scholar 

  2. C. H. Su, and H. Zhou, Transition prediction of a hypersonic boundary layer over a cone at small angle of attack—with the improvement of eN method, Sci. China Ser. G-Phys. Mech. Astron. 52, 115 (2009).

    Article  Google Scholar 

  3. J. Han, N. Jiang, and Y. Tian, Second mode unstable disturbance measurement of hypersonic boundary layer on cone by wavelet transform, Acta Mech. Sin. 27, 488 (2011).

    Article  Google Scholar 

  4. G. Zhao, and X. Li, Crossflow instability of high speed three-dimensional boundary layer, Acta Mech. Sin. 30, 521 (1998).

    Google Scholar 

  5. A. Roghelia, H. Olivier, I. Egorov, and P. Chuvakhov, Experimental investigation of Görtler vortices in hypersonic ramp flows, Exp. Fluids 58, 139 (2017).

    Article  Google Scholar 

  6. A. J. Moyes, P. Paredes, T. S. Kocian, and H. L. Reed, Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone, J. Fluid Mech. 812, 370 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. P. Borg, R. L. Kimmel, and S. Stanfield, Traveling crossflow instability for the HIFiRE-5 elliptic cone, J. Spacecraft Rockets 52, 664 (2015).

    Article  Google Scholar 

  8. H. B. Niu, S. H. Yi, J. J. Huo, W. P. Zheng, and X. L. Liu, Experimental study on hypersonic crossflow instability over a swept flat plate by flow visualization, Acta Mech. Sin. 37, 1395 (2021).

    Article  Google Scholar 

  9. W. S. Saric, H. L. Reed, and E. B. White, Stability and transition of three-dimensional boundary layers, Annu. Rev. Fluid Mech. 35, 413 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Bippes, Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability, Prog. Aerospace Sci. 35, 363 (1999).

    Article  Google Scholar 

  11. D. I. A. Poll, Some observations of the transition process on the windward face of a long yawed cylinder, J. Fluid Mech. 150, 329 (1985).

    Article  Google Scholar 

  12. M. R. Malik, F. Li, M. M. Choudhari, and C. L. Chang, Secondary instability of crossflow vortices and swept-wing boundary-layer transition, J. Fluid Mech. 399, 85 (1999).

    Article  MATH  Google Scholar 

  13. J. B. Edelman, and S. P. Schneider, Secondary instabilities of hypersonic stationary crossflow waves, AIAA J. 56, 182 (2018).

    Article  Google Scholar 

  14. H. B. Yates, M. W. Tufts, and T. J. Juliano, Analysis of the hypersonic cross-flow instability with experimental wavenumber distributions, Fluid Mech. 883, A50 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Niu, S. Yi, X. Liu, J. Huo, and L. **, Experimental investigation of nose-tip bluntness effects on the hypersonic crossflow instability over a cone, Int. J. Heat Fluid Flow 86, 108746 (2020).

    Article  Google Scholar 

  16. C. A. C. Ward, Crossflow Instability and Transition on a Circular Cone at Angle of Attack in a Mach-6 Quiet Tunnel, Dissertation for the Doctoral Degree (Purdue University, West Lafayette, 2014).

    Google Scholar 

  17. S. A. Craig, and W. S. Saric, Crossflow instability in a hypersonic boundary layer, J. Fluid Mech. 808, 224 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Corke, A. Arndt, E. Matlis, and M. Semper, Control of stationary cross-flow modes in a Mach 6 boundary layer using patterned roughness, J. Fluid Mech. 856, 822 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Arndt, T. Corke, E. Matlis, and M. Semper, Controlled stationary/travelling cross-flow mode interaction in a Mach 6.0 boundary layer, J. Fluid Mech. 887, A30 (2020).

    Article  Google Scholar 

  20. B. Wan, G. Tu, X. Yuan, J. Chen, and Y. Zhang, Identification of traveling crossflow waves under real hypersonic flight conditions, Phys. Fluids 33, 044110 (2021).

    Article  Google Scholar 

  21. S. Dong, J. Chen, X. Yuan, X. Chen, and G. Xu, Wall pressure beneath a transitional hypersonic boundary layer over an inclined straight circular cone, Adv. Aerodyn. 2, 29 (2020).

    Article  Google Scholar 

  22. J. Chen, S. Dong, X. Chen, G. Xu, and X. Yuan, Hypersonic boundary layer transitions over a yawed, blunt cone, Aerospace Sci. Tech. 119, 107170 (2021).

    Article  Google Scholar 

  23. F. Li, M. M. Choudhari, L. Duan, and C. L. Chang, Nonlinear development and secondary instability of traveling crossflow vortices, Phys. Fluids 26, 064104 (2014).

    Article  Google Scholar 

  24. P. Wassermann, and M. Kloker, Transition mechanisms induced by travelling crossflow vortices in a three-dimensional boundary layer, J. Fluid Mech. 483, 67 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Gang, S. Yi, and X. Lu, in Design and performance of a hypersonic quiet wind tunnel at NUDT: Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference (AIAA, **amen, 2017).

    Book  Google Scholar 

  26. X. Liu, S. Yi, H. Niu, and L. He, Experimental investigation about the second-mode waves in hypersonic boundary layer over a cone at small angle of attack, Exp. Thermal Fluid Sci. 118, 110143 (2020).

    Article  Google Scholar 

  27. H. Niu, S. Yi, X. Liu, X. Lu, and D. Gang, Experimental investigation of boundary layer transition over a delta wing at Mach number 6, Chin. J. Aeronautics 33, 1889 (2020).

    Article  Google Scholar 

  28. F. Muñoz, D. Heitmann, and R. Radespiel, Instability modes in boundary layers of an inclined cone at Mach 6, J. Spacecraft Rockets 51, 442 (2014).

    Article  Google Scholar 

  29. H. Niu, S. Yi, X. Liu, X. Lu, and L. He, Experimental study of cross-flow instability over a delta flat plate at Mach 6, AIAA J. 57, 5566 (2019).

    Article  Google Scholar 

  30. H. B. Niu, S. H. Yi, X. L. Liu, J. J. Huo, and D. D. Gang, Experimental study of crossflow instability in a Mach 6 delta wing flow, Acta Phys. Sin. 70, 134701 (2021).

    Article  Google Scholar 

  31. X. Liu, S. Yi, X. Xu, Y. Shi, T. Ouyang, and H. **ong, Experimental study of second-mode wave on a flared cone at Mach 6, Phys. Fluids 31, 074108 (2019).

    Article  Google Scholar 

  32. X. Lu, S. Yi, L. He, X. Liu, and F. Zhang, Experimental study on time evolution of shock wave and turbulent boundary layer interactions, J. Appl. Fluid Mech. 13, 1769 (2020).

    Google Scholar 

  33. X. G. Lu, S. H. Yi, L. He, D. D. Gang, and H. B. Niu, Experimental study on unsteady characteristics of shock and turbulent boundary layer interactions, Fluid Dyn. 55, 566 (2020).

    Article  Google Scholar 

  34. F. Zhang, S. Yi, X. Xu, H. Niu, and X. Lu, A swept fin-induced flow field with different height mounting gaps, Chin. J. Aeronautics 34, 148 (2021).

    Google Scholar 

  35. Y. X. Zhao, S. H. Yi, L. F. Tian, and Z. Y. Cheng, Supersonic flow imaging via nanoparticles, Sci. China Ser. E-Tech. Sci. 52, 3640 (2009).

    Article  MATH  Google Scholar 

  36. C. Ward, R. Henderson, and S. P. Schneider, in Secondary instability of stationary crossflow vortices on an inclined cone at Mach 6: Proceedings of the 45th AIAA Fluid Dynamics Conference (AIAA, Dallas, 2015).

    Book  Google Scholar 

  37. G. Xu, J. Chen, G. Liu, S. Dong, and S. Fu, The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow, Fluid Mech. 873, 914 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Zhao, Study on Instability of Stationary Crossflow Vortices in Hypersonic Swept Blunt Plate Boundary Layers (in Chinese), Dissertation for the Doctoral Degree (Tian** University, Tian**, 2017).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank reviewers for their valuable comments. Thanks also go to Dr. Pengcheng Quan of National University of Defense Technology for reviewing and polishing the manuscript carefully.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shihe Yi  (易仕和) or **aoge Lu  (陆小革).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, H., Yi, S., Liu, X. et al. Experimental study of the high-frequency instability in the hypersonic boundary layer over a cone at 6° angle of attack. Acta Mech. Sin. 38, 121551 (2022). https://doi.org/10.1007/s10409-022-21551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-21551-x

Keywords

Navigation