Log in

Aerodynamic optimization using passive control devices near the bogie cabin of high-speed trains

基于被动控制装置的高速列车转向架区域气动优化

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Bogies are responsible for a significant amount of aerodynamic resistance and noise, both of which negatively affect high-speed train performance and passenger comfort. In the present study, the passive control method is applied in designing the bogie cabins of a high-speed train to improve its aerodynamic characteristics. Two passive control measures are introduced, namely, adding a spoiler and creating diversion grooves near the bogie cabins. Furthermore, the aerodynamic and aeroacoustic characteristics of a high-speed train operating at 350 km/h under different control strategies are numerically investigated using the improved-delayed-detached-eddy simulation (IDDES) and the acoustic finite element method (FEM). The impacts of passive control devices on drag reduction, slipstream, and aerodynamic noise are presented and discussed. Numerical results reveal that the passive control devices have a major effect on the slipstream around the train. The amplitude of the fluctuating pressure is higher in the first half of the train than in the second half. The first bogie has the maximum amplitude of the acoustic pressure for both the train with and without passive devices. In the far field, the spoiler installation and placement of the diversion grooves in the front of the bogie cabin can significantly reduce aerodynamic drag and noise. Hence, as shown in this study, using passive control methods to improve the aerodynamic and aeroacoustic properties of high-speed trains can be a viable option.

摘要

高速列车转向架是重要的气动阻力和噪声来源, 这两者都会对高速列车气动性能和乘客的舒适性带来不利影响. 在本研究中, 将被动控制的方法应用于高速列车转向架舱的设计, 以改善其气动性能. 本研究引入了两种被动控制措施, 即加装扰流片和在转向架舱附**设置导流槽. 本文采用改进的延迟分离涡模拟(IDDES)和声学有限元法(FEM), 对高速列车不同被动控制策略下的气动特性和气动声学特性进行了数值研究, 分析并讨论了被动控制装置对减阻、周围气流和气动噪声特性的影响. 研究结果表明, 被动控制装置对列车周围气流有重要影响. 列车前半部分脉动压力幅值高于后半部分. 无论是否加装被动控制装置, 第一个转向架处的声压振幅都是最大的. 对于远场区域, 在转向架舱前安装扰流片和放置导流槽可以明显降低气动阻力和噪声. 因此, 如本研究所示, 采用被动控制方法来改善高速列车气动特性和噪声特性是一种可行的选择.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Raghunathan, H. D. Kim, and T. Setoguchi, Aerodynamics of high-speed railway train, Prog. Aerospace Sci. 38, 469 (2002).

    Article  Google Scholar 

  2. A. D. Vakili, G. A. Givogue, and W. L. Fowler, in An experimental investigation of 2-D cylinders affecting supersonic cavity flow: Proceedings of the 29th AIAA Applied Aerodynamics Conference, Honolulu, 2011.

  3. G. J. Milne, C. C. Thieman, and A. Vakili, in An experimental investigation of supersonic cavity flow control with vertical cylinders: Proceedings of the 43rd Fluid Dynamics Conference, San Diego, 2013.

  4. A. Miyako, and Y. Yamamoto, in Investigation of running resistance of high speed trains: Proceedings of the World Congress on Railway Research (WCRR, Florence, 1997), pp. 577–579.

  5. C. Baker, The flow around high speed trains, J. Wind Eng. Industrial Aerodyn. 98, 277 (2010).

    Article  Google Scholar 

  6. A. Ido, S. Saitou, K. Nkakade, and S. Likura, in Study on underfloor flow to reduce ballast flying phenomena: Proceedings of the 8th World Congress on Railway Research, Seoul, 2008.

  7. S. Wang, D. Burton, A. Herbst, J. Sheridan, and M. C. Thompson, The effect of bogies on high-speed train slipstream and wake, J. Fluids Struct. 83, 471 (2018).

    Article  Google Scholar 

  8. Z. X. Huang, L. Chen, and K. Jiang, Wind tunnel test of air drag reduction schemes of high-speed trains, J. China Railw. Soc. 34, 16 (2012).

    Google Scholar 

  9. H. J. Kaltenbach, I. A. Portillo, and M. Schober, in A generic train-under floor experiment for CFD validation: Proceedings of BBAA VI International Colloquium on Bluff Bodies Aerodynamics and Applications (Milano, 2008), pp. 20–24.

  10. Z. G. Yang, and Z. Gao, Numerical analysis on influence on aerodynamic performance of high-speed train caused by installation of skirt plates, Comput. Aided Eng. 3, 16 (2010).

    Google Scholar 

  11. H. F. Wang, K. H. Yih, G. H. Lee, and S. L. Huang, Synthesis and characterization of the first doubly-bridged N, N-dimethylthiocarbamoyl metal complex: Crystal structure of [Mo(Cl)(CO)2(PPh3)]2(η1:η2: μ-SCNMe2)2, J. Chin. Chem. Soc. 58, 15 (2011).

    Article  Google Scholar 

  12. X. H. Zheng, J. Y. Zhang, and W. H. Zhang, Numerical simulation of aerodynamic drag for high speed train bogies, J. Traffic Transp. Eng. 11, 45 (2011).

    Google Scholar 

  13. Y. Chen, Z. Gao, and Y. G. Wang, Effect of underbody guide plate forms on aerodynamic drag of high-speed train, Comp. Aided Eng. 25, 29 (2016).

    Google Scholar 

  14. J. Wang, G. Minelli, T. Dong, G. Chen, and S. Krajnović, The effect of bogie fairings on the slipstream and wake flow of a high-speed train: An IDDES study, J. Wind Eng. Indust. Aerodyn. 191, 183 (2019).

    Article  Google Scholar 

  15. Z. Sun, Y. Yao, Y. Yang, G. Yang, and D. Guo, Overview of the research progress on aerodynamic noise of high-speed trains in China (in Chinese), Acta Aerodyn. Sin. 36, 385 (2018).

    Google Scholar 

  16. J. Zhang, and C. Zhu, Far field noise contribution radiated from aerodynamic noise source of high speed train, China Railw. Sci. 40, 115 (2019).

    Google Scholar 

  17. S. S. Ding, D. W. Chen, and J. L. Liu, Research development and prospect of China high speed train, Chin. J. Theor. Appl. Mech. 53, 35 (2021).

    Google Scholar 

  18. R. D. Liu, C. S. He, and Y. L. Li, Numerical simulation analysis of aerodynamic noise source intensity and distribution characteristics of high speed train, Railw. Energy Conserv. Environ. Prot. Saf. Health 10, 1 (2020).

    Google Scholar 

  19. D. Z. Wang, and J. M. Ge, Noise characteristics in different bogies areas during high speed train operation, J. Traffic Transp. Eng. 20, 174 (2020).

    Google Scholar 

  20. J. W. Shi, H. Wang, and X. Z. Sheng, Aerodynamic noise characteristics of bogies at 400 km/h, Noise Vib. Control 40, 125 (2020).

    Google Scholar 

  21. D. J. Thompson, E. Latorre Iglesias, X. Liu, J. Zhu, and Z. Hu, Recent developments in the prediction and control of aerodynamic noise from high-speed trains, Int. J. Rail Transp. 3, 119 (2015).

    Article  Google Scholar 

  22. D. J. Thompson, Railway Noise and Vibration: Mechanisms, Modeling and Means of Control (Elsevier, Oxford, 2008).

    Google Scholar 

  23. N. Frémion, N. Vincent, M. Jacob, G. Robert, A. Louisot, and S. Guerrand, Aerodynamic noise radiated by the intercoach spacing and the bogie of a high-speed train, J. Sound Vib. 231, 577 (2000).

    Article  Google Scholar 

  24. A. Torii, and J. Ito, Development of the series 700 Shinkansen trainset (Improvement of noise level), Jpn. Railw. Eng. 14, 16 (2000).

    Google Scholar 

  25. S. Huang, M. Z. Yang, Z. W. Li, and G. Xu, Aerodynamic noise numerical simulation and noise reduction of high speed train bogie section, J. Cent. S. Univ. 42, 3899 (2011).

    Google Scholar 

  26. Y. Zhang, J. Zhang, T. Li, and L. Zhang, Numerical research on aerodynamic noise of trailer bogie, J. Mech. Eng. 52, 106 (2016).

    Article  Google Scholar 

  27. J. Y. Zhu, L. H. Ren, and Z. Y. Lei, Effective of bogie cavity on flow and flow-induced noise behavior around high-speed train bogie region, J. Tongji Univ. (Nat. Sci.) 46, 1556 (2018).

    Google Scholar 

  28. A. Lauterbach, K. Ehrenfried, S. Loose, and C. Wagner, Microphone array wind tunnel measurements of Reynolds number effects in highspeed train aeroacoustics, Int. J. Aeroacoustics 11, 411 (2012).

    Article  Google Scholar 

  29. E. Latorre Iglesias, D. J. Thompson, M. Smith, T. Kitagawa, and N. Yamazaki, Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise, Int. J. Rail Transp. 5, 87 (2016).

    Article  Google Scholar 

  30. Z. Yang, Z. Gao, Y. Chen, and Y. Wang, Numerical analysis on influence on aerodynamic performance of high-speed train caused by installation of skirt plates. Comp. Aided Eng. 19, 16 (2010).

    Google Scholar 

  31. P. R. Spalart, W. H. Jou, M. Strelets, and S. Allmaras, Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, in: Advances in DNS/LES (Grayden Press, Columbus, 1997).

    Google Scholar 

  32. P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. K. Strelets, and A. Travin, A new version of detached-eddy simulation, resistant to ambiguous grid densities, Theoret. Comput. Fluid Dyn. 20, 181 (2006).

    Article  Google Scholar 

  33. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32, 1598 (1994).

    Article  Google Scholar 

  34. M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities, Int. J. Heat Fluid Flow 29, 1638 (2008).

    Article  Google Scholar 

  35. T. Dong, G. Minelli, J. Wang, X. Liang, and S. Krajnovic, The effect of reducing the underbody clearance on the aerodynamics of a high-speed train, J. Wind Eng. Ind. Aerodyn. 204, 104249 (2020).

    Article  Google Scholar 

  36. J. Niu, D. Zhou, T. Liu, and X. Liang, Numerical simulation of aerodynamic performance of a couple multiple units high-speed train, Veh. Syst. Dyn. 55, 681 (2017).

    Article  Google Scholar 

  37. C. **a, H. Wang, X. Shan, Z. Yang, and Q. Li, Effects of ground configurations on the slipstream and near wake of a high-speed train, J. Wind Eng. Ind. Aerodyn. 168, 177 (2017).

    Article  Google Scholar 

  38. M. S. Gritskevich, A. V. Garbaruk, J. Schütze, and F. R. Menter, Development of DDES and IDDES formulations for the k-ω shear stress transport model, Flow Turbul. Combust 88, 431 (2012).

    Article  Google Scholar 

  39. A. Fioravanti, G. Lenzi, G. Vichi, G. Ferrara, S. Ricci, and L. Bagnoli, Assessment and experimental validation of a 3D acoustic model of a motorcycle muffler, SAE Int. J. Engines 8, 266 (2015).

    Article  Google Scholar 

  40. Y. Yao, Z. Sun, G. Yang, W. Liu, and P. Prapamonthon, Analysis of aerodynamic noise characteristics of high-speed train pantograph with different installation bases, Appl. Sci. 9, 2332 (2019).

    Article  Google Scholar 

  41. Y. Yao, Z. Sun, W. Liu, and G. Yang, Analysis of aerodynamic noise characteristics of pantograph in high speed train (in Chinese). Acta Scientiarum Naturalium Universitatis Pekinensis 56, 385 (2020).

    Google Scholar 

  42. C. Cong, X. Deng, and M. Mao, Advances in complex low speed flow around a prolate spheroid (in Chinese), Adv. Mech. 51, 467 (2021).

    Google Scholar 

  43. Q. Zhang, Fundamentals of Aeroacoustics (National Defense Industry Press, Bei**g, 2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2019020), the Strategic Priority Research Program of the Chinese Academy of Sciences (Class B) (Grant No. XDB22020000), and the Informatization Plan of the Chinese Academy of Sciences (Grant No. XXH13506-204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxu Sun  (孙振旭).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Sun, Z., Li, G. et al. Aerodynamic optimization using passive control devices near the bogie cabin of high-speed trains. Acta Mech. Sin. 38, 321363 (2022). https://doi.org/10.1007/s10409-022-21363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-21363-x

Navigation