Log in

Numerical simulation of noise generated by shock (wave) and boundary layer interaction in aero-engine inlet

飞机进气道中激波边界层干扰引起噪音的数值模拟

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We utilize the nonlinear acoustic solver (NLAS) and Ffowcs-Williams/Hawkings (FW-H) equation to investigate the noise generation and radiation due to shock (wave) and boundary layer interaction (SBLI) in the inlet duct. A classical benchmark for SBLI is chosen to validate the flow features and numerical results show good agreement with experimental results. In the simulation of the noise generated by SBLI, the inlet buzz phenomenon is successfully observed. The oscillation of the normal shock is a kind of little buzz and the oscillation of inner shocks is a kind of big buzz with a frequency around 100 Hz. In the far-field, frequency spectrums show a dominant frequency close to the frequency of inner shocks oscillation. This indicates that the oscillation of inner shocks determines the magnitude of the overall sound pressure level (OASPL) of the far-field noise.

摘要

我们采用非线性声学求解器(NLAS)和Ffowcs-Williams/Hawkings (FW-H)方程对飞机进气道中由激波边界层干扰产生的噪音进行了数值研究. 一个关于激波边界层干扰的标模问题用于验证流场特征, 数值结果与实验结果有很好的一致性. 在模拟激波边界层干扰产生噪音的过程中, 我们成功的观察到了喘振现象. **激波的震荡是一种小喘振, 而内激波的震荡是一种大喘振, 频率大约为100 Hz. 远场噪音频谱表明远场噪音的主导频率与内激波震荡的频率很接**, 这说明, 内激波震荡决定了远场噪音的总声压级的量级.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. Curran, Scramjet engines: the first forty years, J. Propulsion Power 17, 1138 (2001)

    Article  Google Scholar 

  2. R. L. Trimpi, A theory for stability and buzz pulsation amplitude in ram jets and an experimental investigation including scale effects, NACA Rept. 1265 (1956)

  3. J. P. Longley, Inlet distortion and compressor stability, Dissertation for Doctoral Degree. (University of Cambridge, Cambridge, 1988)

    Google Scholar 

  4. J. P. Longley, H. W. Shin, R. E. Plumley, P. D. Silkowski, I. J. Day, E. M. Greitzer, C. S. Tan, and D. C. Wisler, Effects of rotating inlet distortion on multistage compressor stability, J. Turbomach. 118, 181 (1996)

    Article  Google Scholar 

  5. G. **ang, X. Gao, X. Jie, X. Li, H. Li, and X. Chen, Flowfield characteristics in sidewall compression inlets, Acta Mech. Sin. 36, 678 (2020)

    Article  Google Scholar 

  6. J. Li, X. Dong, D. Sun, R. Xu, and X. Sun, Response and stabilization of a two-stage axial flow compressor restricted by rotating inlet distortion, Chin. J. Aeronaut. 34, 72 (2021)

    Article  Google Scholar 

  7. Z. Xu, R. Chen, L. I. Quan, and Q. Yao, Vibration fatigue analysis of plane inlet channel under noise environment (in Chinese), Equip. Environ. Eng. 8, 100 (2011)

    Google Scholar 

  8. T. Colonius, and S. K. Lele, Computational aeroacoustics: progress on nonlinear problems of sound generation, Prog. Aerosp. Sci. 40, 345 (2004)

    Article  Google Scholar 

  9. K. Oswatisch, Der Druckrückgewinn bei Geschossen mit Rückstossantrieb bei hohen Übershallgeschwindigkeiten, Der Wirkungsgrad vos Stossdiffusoren, Rept. No. 1005 Forsch. und Entwickl. des Heereswaffenamtes, Göttingen, Germany (1944)

  10. A. Ferri, L. M. Nucci, The origin of aerodynamic instability of supersonic inlets at subcritical conditions, NACA RM L50K30 (1951)

  11. C. L. Dailey, Supersonic diffuser instability, J. Aeronaut. Sci. 22, 733 (1955)

    Article  Google Scholar 

  12. S. A. Fisher, M. C. Neale, and A. J. Brooks, On the sub-critical stability of variable ramp intakes at Mach numbers around two, Rept. No. ARC-R/M-3711 (National Gas Turbine Establishment, 1970)

  13. W. Gao, Z. Li, J. Yang, and Y. Zeng, Effects of trips on the oscillatory flow of an axisymmetric hypersonic inlet with downstream throttle, Chin. J. Aeronaut. 31, 225 (2018)

    Article  Google Scholar 

  14. H. Chen, and H. Tan, Buzz flow diversity in a supersonic inlet ingesting strong shear layers, Aerosp. Sci. Tech. 95, 105471 (2019)

    Article  Google Scholar 

  15. M. Abedi, R. Askari, and M. R. Soltani, Numerical simulation of inlet buzz, Aerosp. Sci. Tech. 97, 105547 (2020)

    Article  Google Scholar 

  16. Y. Choe, C. Kim, and K. Kim, Effects of optimized bleed system on supersonic inlet performance and buzz, J. Propulsion Power 36, 211 (2020)

    Article  Google Scholar 

  17. J. K. James, A. Suryan, and H. D. Kim, Buzz characteristics and separation bubble dynamics in supersonic intake, Aerosp. Sci. Tech. 115, 106795 (2021)

    Article  Google Scholar 

  18. M. J. Lighthill, and M. H. A. Newman, On sound generated aerodynamically. I. General theory, Proc. R. Soc. Lond. A 211, 564 (1952)

    Article  MathSciNet  Google Scholar 

  19. M. J. Lighthill, On sound generated aerodynamically. II. Turbulence as a source of sound, Proc. R. Soc. Lond. A 222, 1 (1954)

    Article  MathSciNet  Google Scholar 

  20. J. E. Ffowcs Williams, D. L. Hawkings, and M. J. Lighthill, Sound generation by turbulence and surfaces in arbitrary motion, Phil. Trans. R. Soc. Lond. A 264, 321 (1969)

    Article  Google Scholar 

  21. P. Batten, E. Ribaldone, and M. Casella, in Towards a generalized nonlinear acoustics solver: 10th AIAA/CEAS Aeroacoustics Conference (Manchester, 2004)

  22. B. Merci, J. Vierendeels, C. D. Langhe, and E. Dick, in Development and application of a new cubic low-Reynolds eddy-viscosity turbulence model: Proceeding of the 15th AIAA Computational Fluid Dynamics Conference (Anaheim, 2001)

  23. F. Farassat, Linear acoustic formulas for calculation of rotating blade noise, AIAA J. 19, 1122 (1981)

    Article  Google Scholar 

  24. J. M. Delery, Experimental investigation of turbulence properties in transonic shock/boundary-layer interactions, AIAA J. 21, 180 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunfeng Zhang  (张群峰).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11772314), and the Basic Research Program (Grant No. JCKY2018204b054). The authors would like to acknowledge the Highperformance Computing Platform of Peking University for providing computational resources.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., An, Y., Li, Z. et al. Numerical simulation of noise generated by shock (wave) and boundary layer interaction in aero-engine inlet. Acta Mech. Sin. 38, 321482 (2022). https://doi.org/10.1007/s10409-021-09009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09009-5

Keywords

Navigation