Log in

Interactive buckling of an inflated envelope under mechanical and thermal loads

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper elucidates the interactive buckling behaviors of an inflated envelope under coupled mechanical and thermal loads, especially the longitudinal wrinkling bifurcation and hoop ovalization buckling. The longitudinal bending buckling process of the inflated envelope can be divided into three continuous stages, which are global buckling, interactive global-local buckling, and kink. A variety of hoop ovalization buckling modes are observed under coupled mechanical-thermal load. Unlike the mechanical case, thermal load leads to a hoop negative ovalization buckling. In addition, it can accelerate the longitudinal coupled bifurcation and resist the hoop coupled ovalization buckling. Moreover, the bending resistance of the inflated envelope will be improved when the length of the structure is increased, resulting in the difficulty of it to become wrinkled. These results provide a new insight into the buckling behaviors of an inflated envelope under coupled external loads, and give a reference for the design of the inflated envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Jenkins, C.: Gossamer Spacecraft (Membrane and Inflatable Structures Technology for Space Applications). Progress in Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics, Reston (2001)

    Book  Google Scholar 

  2. Jenkins, C.: Recent advances in gossamer spacecraft. Prog. Astronaut. Aeronaut. 212, 109–124 (2006)

    Google Scholar 

  3. Wang, C.G., **e, J., Tan, H.F.: The modal analysis and modal behavior investigations on the wrinkled membrane inflated beam. Acta Astronaut. 81, 660–666 (2012)

    Article  Google Scholar 

  4. Veldman, S.L.: Wrinkling prediction of cylindrical and conical inflated cantilever beams under torsion and bending. Thin-walled Struct. 44, 211–215 (2006)

    Article  Google Scholar 

  5. Yao, W., Li, Y., Wang, W.: Thermodynamic model and numerical simulation of a stratospheric airship take-off process. J. Astronaut. 28, 603–607 (2007)

    Google Scholar 

  6. Stefan, K.: Thermal Effects on a High Altitude Airship. American Institute of Aeronautics and Astronautics, EI Segundo (1983)

    Book  Google Scholar 

  7. Comer, R.L.: Deflections of an inflated circular-cylindrical cantilever beam. Am. Inst. Aeronaut. Astronaut. 1, 1652–1655 (1963)

    Article  MATH  Google Scholar 

  8. Main, J.A., Peterson, S.W.: Load-deflection behavior of space-based inflatable fabric beams. Aerosp. Eng. 2, 225–238 (1994)

    Article  Google Scholar 

  9. Wielgosz, C., Thomas, J.C.: Deflections of inflatable fabric panels at high pressure. Thin-Walled Struct. 40, 523–536 (2002)

    Article  Google Scholar 

  10. Thomas, J.C., Wielgosz, C.: Deflections of highly inflated fabric tube. Thin-Walled Struct. 42, 1049–1066 (2004)

    Article  Google Scholar 

  11. Stein, M., Hedgepeth, J.M.: Analysis of partly wrinkled membranes. NASA (1961)

  12. Wang, C.G., Du, X.W., He, X.D.: Wrinkling analysis of space inflatable membrane structures. Chin. J. Theor. Appl. Mech. 40, 331–337 (2008) (in Chinese)

  13. Wood, J.: The flexure of a uniformly pressurized, circular, cylindrical shell. J. Appl. Mech. 25, 453–461 (1958)

    MATH  Google Scholar 

  14. Roh, J., Lee, I.: Large deformation analysis of inflated membrane boom structures with various slenderness ratios. Am. Inst. Aeronant. Astronaut. Inc. 10, 1–10 (2007)

  15. Jekot, T.: Non-linear problems of thermal buckling of a beam. Therm. Stress. 19, 359–369 (1996)

    Article  Google Scholar 

  16. Li, S., Batra, R.: Thermal buckling and postbuckling of Euler-Bernoulli beams supported on nonlinear elastic foundations. Am. Inst. Aeronaut. Astronaut. 45, 712–720 (2007)

    Article  Google Scholar 

  17. Coffin, D., Bloom, F.: Elastica solution for the hygrothermal buckling of a rod. Non-linear Mech. 34, 935–947 (1999)

    Article  MATH  Google Scholar 

  18. Li, S., Zhou, Y.: Geometrically nonlinear analysis of Timoshenko beams under thermomechanical loadings. J. Therm. Stress. 26, 861–872 (2003)

    Article  Google Scholar 

  19. Yang, Y.Q., Ma, Y.P.: Analysis and optimization of envelope material of high-altitude airships. J. Bei**g Univ. Aeronaut. Astronaut. 3, 9 (2014)

    Google Scholar 

  20. Wang, C.G., Du, X.W.: A new computational method for wrinkling analysis of gossamer space structures. Int. J. Solids Struct. 46, 1516–1526 (2009)

    Article  MATH  Google Scholar 

  21. Yao, Z., Han, Z.: Finite element analysis of wrinkling of elastic sheet. J. Adv. Solid Mech. 7, 232–239 (1997)

    Google Scholar 

  22. Veldman, S.L., Bergsma, O.K.: Analysis of inflated conical cantilever beams in bending. Am. Inst. Aeronaut. Astronaut. J. 44, 1345–1349 (2006)

    Article  Google Scholar 

  23. Karamanos, S.A.: Bending instabilities of elastic tubes. Int. J. Solids Struct. 39, 2059–2085 (2002)

    Article  MATH  Google Scholar 

  24. Watashi, K.: Thermal buckling and progressive ovalization of pipes: experiences at the TTS sodium test facility and their analysis. Nucl. Eng. Des. 153, 319–330 (1995)

    Article  Google Scholar 

  25. Al-Ajlan, S.A.: Measurements of thermal properties of insulation materials by using transient plane source technique. Appl. Therm. Eng. 26, 2184–2191 (2006)

    Article  Google Scholar 

  26. Bai, Y., Post, N.L.: Experimental investigations on temperature-dependent thermo-physical and mechanical properties of pultruded GFRP composites. Thermochim. Acta 469, 28–35 (2008)

    Article  Google Scholar 

  27. Williams, R.B., Inman, D.J.: Temperature-dependent thermoelastic properties for macro fiber composite actuators. J. Therm. Stress. 27, 903–915 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 11172079, 11572099), the Program for New Century Excellent Talents in Harbin Institute of Technology (Grant NCET-11-0807), the Natural Science Foundation of Heilongjiang Province of China (A2015002), and the Fundamental Research Funds for the Central Universities (Grant HIT.BRETIII.201209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C.G., Liu, M.X. & Tan, H.F. Interactive buckling of an inflated envelope under mechanical and thermal loads. Acta Mech. Sin. 33, 159–172 (2017). https://doi.org/10.1007/s10409-016-0615-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0615-x

Keywords

Navigation