Log in

The influence of the wake of a flap** wing on the production of aerodynamic forces

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The effect of the wake of previous strokes on the aerodynamic forces of a flap** model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing ``im**es'' on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%–18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flap** wing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickinson, M.H.: The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. J. Exp. Biol. 192, 179–206 (1994)

    Google Scholar 

  2. Sun, M., Hossein, H.: A study on the mechanism of high-lift generation by an airfoil in unsteady motion at low Reynolds number. Acta Mechanica Sinica 17, 97–114 (2001)

    Google Scholar 

  3. Dickinson, M.H., Lehman, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)

    Google Scholar 

  4. Sun, M., Tang, J.: Unsteady aerodynamic force generation by a model fruit fly wing in flap** motion. J. Exp. Biol. 205, 55–70 (2002)

    Google Scholar 

  5. Birch, J.M., Dickinson, M.H.: The Influence of wing-wake interactions on the production of aerodynamic forces in flap** flight. J. Exp. Biol. 206, 2257–2272 (2003)

    Google Scholar 

  6. Ellington, C.P.: The aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond. B 305, 41–78 (2003)

    Google Scholar 

  7. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of free-flight maneuvers in drosophila. Science 300, 495–498 (2003)

    Google Scholar 

  8. Sun, M., Wu, J.H.: Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. J. Exp. Biol. 206, 3065–3083 (2003)

    Google Scholar 

  9. Wu, J.H., Sun, M.: Unsteady aerodynamic forces of a flap** wing. J. of Exp. Biol. 207, 1137–1150 (2004)

    Google Scholar 

  10. Sun, M., Wu, J.H.: Large aerodynamic force generation by a swee** wing at low Reynolds numbers. Acta Mechanica Sinica 20, 24–31 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Sun.

Additional information

The project supported by the National Natural Science Foundation of China (10232010) and the National Aeronautic Science Fund of China(03A51049)

The English text was polished by **%20wing%20on%20the%20production%20of%20aerodynamic%20forces&author=Jianghao%20Wu%20et%20al&contentID=10.1007%2Fs10409-005-0064-4&copyright=Springer-Verlag%20Berlin%20Heidelberg&publication=0567-7718&publicationDate=2005-10-26&publisherName=SpringerNature&orderBeanReset=true">Reprints and permissions

About this article

Cite this article

Wu, J., Sun, M. The influence of the wake of a flap** wing on the production of aerodynamic forces. ACTA MECH SINICA 21, 411–418 (2005). https://doi.org/10.1007/s10409-005-0064-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-005-0064-4

Keywords

Navigation