Log in

Transient flow of microcapsules through convergent–divergent microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The study deals with a microfluidic method to investigate the transient behavior of microcapsules in flow. The technique consists of investigating ovalbumin microcapsules passing through a convergent–divergent microchannel made of PolyDiMethylSiloxane. We work with three types of square microchannel with, respectively, cross section values of h × h = 30 × 30, 50 × 50 and 70 × 70 μm. The microchannels length is L = 3h. We analyze the kinetics of deformation of the microcapsules in the microchannels for velocity ranging from 2 to 5 cm/s and for microcapsule size ratio d/h ranging from 0.9 to 2.5. The relaxation process at the pore outlet is modeled using an exponential relaxation law. We show that that the relaxation time at the divergent outlet depends on the microcapsule size ratio d/h. Thanks to the analytical expression of the relaxation, we extract a shear modulus of the membrane equal to 0.04 N/m. This value is consistent with the value of 0.07 N/m that we found using the steady state analysis performed in cylindrical glass capillaries. Thus, it is interesting to notice that the microcapsule behavior based on a simple analytical model can be successfully described despite the complex flow situation consisting of deformable microcapsule in confined square microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andry MC, Edwards-Lévy F, Lévy MC (1996) Free amino group content of serum albumin microcapsules.iii. a study at low ph values. Int J Pharm 128:197

    Article  Google Scholar 

  • Barthès-Biesel D, Rallison JM (1981) The time-dependent deformation of a capsule freely suspended in a linear shear flow. J Fluid Mech 113:251–267

    Article  MATH  Google Scholar 

  • Carin M, Barthès-Biesel D, Edwards-Lévy F, Postel C, Andrei D (2003) Compression of biocompatible liquid filled hsa-alginate capsules: determination of the membrane mechanical properties. Biotechnol Bioeng 82:207

    Article  Google Scholar 

  • Chambina O, Voilleya A, Gharsallaoui A, Roudauta G, Saurela R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121

    Article  Google Scholar 

  • Chang KS, Olbricht WL (1993) Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J Fluid Mech 250:609–633

    Article  Google Scholar 

  • Chang T (2005) Therapeutic applications of polymeric artificial cells. Nat Rev 4:221

    Article  Google Scholar 

  • Chu TX, Salsac A-V, Leclerc E, Barthès-Biesel D, Wurtz H, Edwards-Lévy F (2010) Comparison between measurements of elasticity and free amino group content of ovalbumin microcapsule membranes: discrimination of the cross-linking degree. J Colloid Interface Sci 355:81–88

    Article  Google Scholar 

  • Fairhurst D, Loxley A (1954) Micro- and nanoencapsulation of water- and oil-soluble actives for cosmetic and pharmaceutical applications. Particle Sciences Inc., Bethlehem

    Google Scholar 

  • Fery A, Weinkamer R (2007) Mechanical properties of micro- and nanocapsules: single capsule measurements. Polymer 48:7221–7235

    Article  Google Scholar 

  • Feng WW, Yang WH (1973) On the contact problem of an inflated spherical nonlinear membrane. J Appl Mech 40:209–214

    Article  Google Scholar 

  • Gombotz WR, Wee S (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267

    Article  Google Scholar 

  • Hochmuth RM (2000) Micropipette aspiration of living cells (review). J Biomech 33:15–22

    Article  Google Scholar 

  • Lardner TJ, Pujara P (1980) Compression of spherical cells. Mech Today 5:161–176

    MathSciNet  Google Scholar 

  • Lefebvre Y, Barthès-Biesel D (2007) Motion of a capsule in a cylindrical tube: effect of membrane pre-stress. J Fluid Mech 589:157–181

    Article  MathSciNet  MATH  Google Scholar 

  • Lefebvre Y, Leclerc E, Barthès-Biesel DD, Walter J, Edwards-Lévy F (2008) Flow of artificial microcapsules in microfluidic channels: a method for determining the elastic properties of the membrane. Phys Fluids 20:123102–123112

    Article  Google Scholar 

  • Orivea G, Hernndeza R, Castroa M, Murua A, Portero A, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Controlled Release 138:76–83

    Google Scholar 

  • Quéguiner C, Barthès-Biesel D (1997) Axisymmetric motion of capsules through cylindrical channels. J Fluid Mech 348:349–376

    Article  MathSciNet  MATH  Google Scholar 

  • Rachik M, D. Barthès-Biesel D, Carin M, Edwards-Lévy F (2006) Identification of the elastic properties of an artificial capsule membrane with the compression test : effect of thickness. J Colloid Interface Sci 301:217

    Article  Google Scholar 

  • Risso F, Carin M (2004) Compression of a capsule: mechanical laws of membranes with negligible bending stiffness. Phys Rev E 69:061601–061608

    Article  Google Scholar 

  • Risso F, Colle-Paillot F, Zagzoule M (2006) Experimental investigation of a bioartificial capsule flowing in a narrow tube. J Fluid Mech 547:149–173

    Article  MATH  Google Scholar 

  • Walter A, Rehage H, Leonhard H (2001) Shear induced deformation of microcapsules: shape oscillations and membrane folding. Colloids Surf A: Physicochem Eng Aspects 183–185:123–132

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conseil Régional de Picardie (projects μFIEC and MODCAP). The experimental work was performed in collaboration with Pr. Teruo Fujii research group (French-Japanese SAKURA grant). We thank Florence Edwards Levy from University of Reims who provided the microcapsules used in this study. We also thank Takuji Okamoto for the microchips fabrication and Pr. Marie Oshima (IIS, University of Tokyo) who provided the high speed phantom camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Leclerc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leclerc, E., Kinoshita, H., Fujii, T. et al. Transient flow of microcapsules through convergent–divergent microchannels. Microfluid Nanofluid 12, 761–770 (2012). https://doi.org/10.1007/s10404-011-0907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0907-1

Keywords

Navigation