Log in

Tuberculosis in Wild Pigs from Argentina

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC) and non-tuberculous Mycobacteria (NTM), may infect wild and domestic mammals, including humans. Although cattle are the main hosts and spreaders of M. bovis, many wildlife hosts play an important role worldwide. In Argentina, wild boar and domestic pigs are considered important links in mammalian tuberculosis (mTB) transmission. The aim of this work was to investigate the presence of M. bovis in wild pigs from different regions of Argentina, to characterize isolates of M. bovis obtained, and to compare those with other previously found in vertebrate hosts. A total of 311 samples from wild pigs were obtained, and bacteriological culture, molecular identification and genoty** were performed, obtaining 63 isolates (34 MTC and 29 NTM). Twelve M. bovis spoligotypes were detected. Our findings suggest that wild pigs have a prominent role as reservoirs of mTB in Argentina, based on an estimated prevalence of 11.2 ± 1.8% (95% CI 8.0–14.8) for MTC and the frequency distribution of spoligotypes shared by cattle (75%), domestic pigs (58%) and wildlife (50%). Argentina has a typical scenario where cattle and pigs are farm-raised extensively, sharing the environment with wildlife, creating conditions for effective transmission of mTB in the wildlife–livestock–human interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Data Availability

Raw data were generated at the School of Veterinary Science, University of Buenos Aires. Derived data supporting the findings of this study are available from the corresponding author on request.

References

  • Abdala AA, Garbaccio S, Zumárraga M, Tarabla HD (2015) Mycobacterium bovis en fauna silvestre de la cuenca lechera de Santa Fe. Argentina. Revista Argentina de Microbiologia 47(3) https://doi.org/10.1016/j.ram.2015.04.005

  • Aguilar León D, Zumárraga MJ, Jiménez Oropeza R, Gioffré AK, Bernardelli A, Orozco Estévez H, Cataldi AA, Hernández Pando R (2009) Mycobacterium bovis with different genotypes and from different hosts induce dissimilar immunopathological lesions in a mouse model of tuberculosis. Clinical and Experimental Immunology 157(1):139–147. https://doi.org/10.1111/j.1365-2249.2009.03923.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballari SA, Barrios-García MN (2014) A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Review 44(2) https://doi.org/10.1111/mam.12015

  • Barandiaran S, Marfil MJ, Capobianco G, Pérez Aguirreburualde MS, Zumárraga MJ, Eirin ME, Cuerda MX, Winter M, Martínez Vivot M, Perez AM, La Sala LF (2021) Epidemiology of Pig Tuberculosis in Argentina. Frontiers in Veterinary Science 8 https://doi.org/10.3389/fvets.2021.693082

  • Barasona JA, Latham MC, Acevedo P, Armenteros JA, Latham ADM, Gortazar C, Carro F, Soriguer RC, Vicente J (2014) Spatiotemporal interactions between wild boar and cattle: Implications for cross-species disease transmission. Veterinary Research 45(1) https://doi.org/10.1186/s13567-014-0122-7

  • Beasley JC, Ditchkoff SS, Mayer JJ, Smith MD, Vercauteren KC (2018) Research priorities for managing invasive wild pigs in North America. In Journal of Wildlife Management 82(4) https://doi.org/10.1002/jwmg.21436

  • Blanco FC, Bianco MV, Meikle V, Garbaccio S, Vagnoni L, Forrellad M, Klepp LI, Cataldi AA, Bigi F (2011) Increased IL-17 expression is associated with pathology in a bovine model of tuberculosis. Tuberculosis 91(1) https://doi.org/10.1016/j.tube.2010.11.007

  • Bosch J, Iglesias I, Martínez M, de la Torre A (2020) Climatic and topographic tolerance limits of wild boar in eurasia: Implications for their expansion. Geography, Environment, Sustainability 13(1) https://doi.org/10.24057/2071-9388-2019-52

  • Carneiro PAM, Pasquatti TN, Takatani H, Zumárraga MJ, Marfil MJ, Barnard C, Fitzgerald SD, Abramovitch RB, Araujo FR, Kaneene JB (2020) Molecular characterization of Mycobacterium bovis infection in cattle and buffalo in Amazon Region. Brazil. Veterinary Medicine and Science 6(1):133–141. https://doi.org/10.1002/vms3.203

    Article  CAS  PubMed  Google Scholar 

  • Carpinetti B, Castresana G, Rojas P, Grant J, Marcos A, Monterubbianesi M, Borrás P (2014) Vigilancia epidemiológica en poblaciones de cerdos silvestres (Sus Scrofa). Implicancias para la salud pública, la producción animal y la conservación de la biodiversidad. SNS 5–6

  • Carpinetti B, Di Guirolamo G, Delgado JV, Martínez RD (2016) El Cerdo Criollo Costero: Valioso recurso zoogenético local de la provincia de Buenos Aires Argentina. Archivos de Zootecnia 65(251) https://doi.org/10.21071/az.v65i251.703

  • Carpinetti B, Castresana G, Rojas P, Grant J, Marcos A, Monterubbianesi M, Sanguinetti HR, Serena MS, Echeverría MG, Garciarena M, Aleksa A (2017) Determinación de anticuerpos contra patógenos virales y bacterianos seleccionados en la población de cerdos silvestres (Sus scrofa) de la Reserva Natural Bahía Samborombón, Argentina. Analecta Veterinaria 37(1):004. https://doi.org/10.24215/15142590e004

    Article  Google Scholar 

  • Crispell J, Zadoks RN, Harris SR, Paterson B, Collins DM, de-Lisle GW, Livingstone P, Neill MA, Biek R, Lycett SJ, Kao RR, Price-Carter M (2017) Using whole genome sequencing to investigate transmission in a multi-host system: Bovine tuberculosis in New Zealand. BMC Genomics 18(1) https://doi.org/10.1186/s12864-017-3569-x

  • de Kantor IN, Ritacco V (1994) Bovine tuberculosis in Latin America and the Caribbean: current status, control and eridication programs. Veterinary Microbiology 40(1–2) https://doi.org/10.1016/0378-1135(94)90042-6

  • Duault H, Michelet L, Boschiroli M-L, Durand B, Canini L (2022) A Bayesian evolutionary model towards understanding wildlife contribution to F4-family Mycobacterium bovis transmission in the South–West of France. Veterinary Research 53(1) https://doi.org/10.1186/s13567-022-01044-x

  • Figueroa CE, Acosta DB, Mac Allister ME, Merele M, Fernández GP, Carpinetti BN, Winter M, Abate S, Barandiaran S, Merino ML (2022) Patterns of genetic variation on wild pig (Sus scrofa) populations over a complete range of the species in Argentina. Mammalia 86(4):359–372. https://doi.org/10.1515/mammalia-2021-0141

    Article  Google Scholar 

  • Gcebe N, Hlokwe TM (2017) Non-tuberculous mycobacteria in South African wildlife: neglected pathogens and potential impediments for bovine tuberculosis diagnosis. Front Cell Infect Microbiol. 30(7):15. https://doi.org/10.3389/fcimb.2017.00015.PMID:28194371;PMCID:PMC5276850

    Article  Google Scholar 

  • Ghielmetti G, Hilbe M, Friedel U, Menegatti C, Bacciarini L, Stephan R, Bloemberg G (2021) Mycobacterial infections in wild boars (Sus scrofa) from southern Switzerland: diagnostic improvements, epidemiological situation and zoonotic potential. Transboundary and Emerging Diseases 68(2) https://doi.org/10.1111/tbed.13717

  • Gortazar C, Vicente J, Gavier-Widén D (2003) Pathology of bovine tuberculosis in the European wild boar (Sus scrofa). Veterinary Record 152(25) https://doi.org/10.1136/vr.152.25.779

  • Gortázar C, Fernández-Calle LM, Collazos-Martínez JA, Mínguez-González O, Acevedo P (2017) Animal tuberculosis maintenance at low abundance of suitable wildlife reservoir hosts: a case study in northern Spain. Preventive Veterinary Medicine 146 https://doi.org/10.1016/j.prevetmed.2017.08.009

  • Hars J, Richomme C, Riviere J, Payne A, Faure E, Boschiroli ML (2013) La tuberculose bovine dans la faune sauvage en France. Risques pour l’élevage bovin. Bulletin de l’Academie Veterinaire de France 166(3) https://doi.org/10.4267/2042/51801

  • Hermans PW, van Soolingen D, Dale JW, Schuitema AR, McAdam RA, Catty D, van Embden JD (1990) Insertion element IS986 from Mycobacterium tuberculosis: a useful tool for diagnosis and epidemiology of tuberculosis. Journal of Clinical Microbiology 28(9):2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iacolina L, Pertoldi C, Amills M, Kusza S, Megens HJ, Bâlteanu VA, Bakan J, Cubric-Curic V, Oja R, Saarma U, Scandura M, Šprem N, Stronen AV (2018) Hotspots of recent hybridization between pigs and wild boars in Europe. Scientific Reports 8(1) https://doi.org/10.1038/s41598-018-35865-8

  • IUCN (2023) The IUCN Red List of Threatened Species. Version 2022–2. In https://www.iucnredlist.org. Downloaded on 26 Jan 2023

  • Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, Van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. Journal of Clinical Microbiology 35(4):907–914. https://doi.org/10.1016/S0305-4403(02)00239-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kean JM, Barlow ND, Hickling GJ (1999) Evaluating potential sources of bovine tuberculosis infection in a New Zealand cattle herd. New Zealand Journal of Agricultural Research 42(1) https://doi.org/10.1080/00288233.1999.9513358

  • La Sala LF, Burgos JM, Caruso NC, Bagnato CE, Ballari SA, Guadagnin DL, Kindel A, Etges M, Merino ML, Marcos A, Skewes O, Schettino D, Perez AM, Condori E, Tammone A, Carpinetti B, Zalba SM (2023) Wild pigs and their widespread threat to biodiversity conservation in South America. Journal for Nature Conservation 73 https://doi.org/10.1016/j.jnc.2023.126393

  • Laguna E, Barasona JA, Carpio AJ, Vicente J, Acevedo P (2022) Permeability of artificial barriers (fences) for wild boar (Sus scrofa) in Mediterranean mixed landscapes. Pest Management Science 78(6) https://doi.org/10.1002/ps.6853

  • Luciano SA & Roess A (2020) Human zoonotic tuberculosis and livestock exposure in low- and middle-income countries: a systematic review identifying challenges in laboratory diagnosis. In Zoonoses and Public Health. Wiley-VCH Verlag, Vol 67, Issue 2, pp 97–111. https://doi.org/10.1111/zph.12684

  • Machackova M, Matlova L, Lamka J, Smolik J, Melicharek I, Hanzlikova M, Docekal J, Cvetnic Z, Nagy G, Lipiec M, Ocepek M, Pavlik I (2003) Wild boar (Sus scrofa) as a possible vector of mycobacterial infections: review of literature and critical analysis of data from Central Europe between 1983 to 2001. Veterinarni Medicina 48(3) https://doi.org/10.17221/5750-VETMED

  • Maciel ALG, Loiko MR, Bueno TS, Moreira JG, Coppola M, Dalla Costa ER, Schmid KB, Rodrigues RO, Cibulski SP, Bertagnolli AC, Mayer FQ (2018) Tuberculosis in Southern Brazilian wild boars (Sus scrofa): first epidemiological findings. Transboundary and Emerging Diseases 65(2):518–526. https://doi.org/10.1111/tbed.12734

    Article  CAS  PubMed  Google Scholar 

  • Madeira S, Manteigas A, Ribeiro R, Otte J, Fonseca AP, Caetano P, Abernethy D, Boinas F (2017) Factors that influence Mycobacterium bovis infection in red deer and wild boar in an epidemiological risk area for tuberculosis of game species in Portugal. Transboundary and Emerging Diseases 64(3):793–804. https://doi.org/10.1111/tbed.12439

    Article  CAS  PubMed  Google Scholar 

  • Meikle V, Bianco MV, Blanco FC, Gioffré A, Garbaccio S, Vagnoni L, Di Rienzo J, Canal A, Bigi F, Cataldi A (2011) Evaluation of pathogenesis caused in cattle and guinea pig by a Mycobacterium bovis strain isolated from wild boar. BMC Veterinary Research 7(1):37. https://doi.org/10.1186/1746-6148-7-37

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng XJ, & Lindsay DS (2009) Wild boars as sources for infectious diseases in livestock and humans. In Philosophical Transactions of the Royal Society B: Biological Sciences. Vol 364, Issue 1530. https://doi.org/10.1098/rstb.2009.0086

  • Michel AL, Bengis RG, Keet DF, Hofmeyr M, De Klerk LM, Cross PC, Jolles AE, Cooper D, Whyte IJ, Buss P, & Godfroid J (2006). Wildlife tuberculosis in South African conservation areas: implications and challenges Veterinary Microbiology 112(2–4 SPEC. ISS.). https://doi.org/10.1016/j.vetmic.2005.11.035

  • Mignone W, Ballardini M, Sanguinetti V, Bollo E, Dini V (1997) La tuberculosi dei cinghiali (Sus scrofa) a vita libera in Liguria: Primi isolamenti di micobactteri e prtocollo di monitoraggio. BIPAS 16:87–94

    Google Scholar 

  • Muñoz-Mendoza M, Marreros N, Boadella M, Gortázar C, Menéndez S, de Juan L, Bezos J, Romero B, Copano MF, Amado J, Sáez JL, Mourelo J, Balseiro A (2013) Wild boar tuberculosis in Iberian Atlantic Spain: A different picture from Mediterranean habitats. BMC Veterinary Research 9(June 2014) https://doi.org/10.1186/1746-6148-9-176

  • Naranjo V, Gortazar C, Vicente J, de la Fuente J (2008) Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Veterinary Microbiology 127(1–2):1–9. https://doi.org/10.1016/j.vetmic.2007.10.002

    Article  PubMed  Google Scholar 

  • Oriani A, Marfil MJ, Zumárraga M, Baldini M (2019) Prevalence and species diversity of nontuberculous mycobacteria in drinking water supply system of Bahía Blanca city, Argentina. International Journal of Mycobacteriology 8(2) https://doi.org/10.4103/ijmy.ijmy_39_19

  • Oriani DS, Gastaldo MF, Tortone CA, Staskevich AS, Remirez P, Valle H, et al. (2022) Micobacterias no tuberculosas autóctonas de La Pampa (Argentina) y su capacidad de reacción cruzada en el diagnóstico de tuberculosis bovina. Native non-tuberculous mycobacteria from La Pampa (Argentina) and their ability to cross-reaction in the bov. Vetec Revista Académica de Investigación, Docencia y Extensión de las Ciencias Veterinarias vol 4 pp 10–8. Available online at: https://cerac.unlpam.edu.ar/index.php/Vetec/article/view/7229

  • Parra A, Fernández-Llario P, Tato A, Larrasa J, García A, Alonso JM, Hermoso De Mendoza M, Hermoso De Mendoza J (2003) Epidemiology of Mycobacterium bovis infections of pigs and wild boars using a molecular approach. Veterinary Microbiology 97(1–2):123–133. https://doi.org/10.1016/j.vetmic.2003.08.007

    Article  CAS  PubMed  Google Scholar 

  • Pescador M, Sanguinetti J, Pastore H, Peris S (2009) Expansion of the introduced wild boar (Sus scrofa) in the Andean region. Argentinean Patagonia. Galemys 21

  • Phillips CJC, Foster CRW, Morris PA, Teverson R (2003) The transmission of Mycobacterium bovis infection to cattle. In: Research in Veterinary Science 74(1) https://doi.org/10.1016/S0034-5288(02)00145-5

  • Podgórski T, Baś G, Jedrzejewska B, Sönnichsen L, Śniezko S, Jedrzejewski W, Okarma H (2013) Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. Journal of Mammalogy 94(1) https://doi.org/10.1644/12-MAMM-A-038.1

  • Queirós J, Alves PC, Vicente J, Gortázar C, De La Fuente J (2018) Genome-wide associations identify novel candidate loci associated with genetic susceptibility to tuberculosis in wild boar. Scientific Reports 8(1) https://doi.org/10.1038/s41598-018-20158-xR

  • R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Reis AC, Tenreiro R, Albuquerque T, Botelho A, Cunha MV (2020) Long-term molecular surveillance provides clues on a cattle origin for Mycobacterium bovis in Portugal. Scientific Reports 10(1) https://doi.org/10.1038/s41598-020-77713-8

  • Réveillaud É, Desvaux S, Boschiroli ML, Hars J, Faure É, Fediaevsky A, Cavalerie L, Chevalier F, Jabert P, Poliak S, Tourette I, Hendrikx P, Richomme C (2018) Infection of wildlife by Mycobacterium bovis in France Assessment through a national surveillance system, Sylvatub. Frontiers in Veterinary Science 5(OCT) https://doi.org/10.3389/fvets.2018.00262

  • Richomme C, Courcoul A, Moyen JL, Reveillaud É, Maestrini O, De Cruz K, Drapeau A, Boschiroli ML (2019) Tuberculosis in the wild boar: frequentist and Bayesian estimations of diagnostic test parameters when Mycobacterium bovis is present in wild boars but at low prevalence. PLoS ONE 14(9):1–14. https://doi.org/10.1371/journal.pone.0222661

    Article  CAS  Google Scholar 

  • Richomme C, Réveillaud E, Moyen JL, Sabatier P, de Cruz K, Michelet L, Boschiroli ML (2020) Mycobacterium bovis infection in red foxes in four animal tuberculosis endemic areas in France. Microorganisms 8(7):1–11. https://doi.org/10.3390/microorganisms8071070

    Article  Google Scholar 

  • Sannino E, Cardillo L, Paradiso R, Cerrone A, Coppa P, Toscano VM, D’Alessio N, Lucibelli MG, Galiero G, de Martinis C, Fusco G (2021) A correlation of Mycobacterium bovis SB0134 infection between cattle and a wild boar (Sus Scrofa) in Campania region. Veterinary and Animal Science 13 https://doi.org/10.1016/j.vas.2021.100182

  • Santos N, Correla-Neves M, Ghebremichael S, Källenius G, Svenson SB, Almeida V (2009) Epidemiology of Mycobacterium bovis infection in wild boar (Sus scrofa) from Portugal. Journal of Wildlife Diseases 45(4) https://doi.org/10.7589/0090-3558-45.4.1048

  • Santos N, Geraldes M, Afonso A, Almeida V, Correia-Neves M (2010) Diagnosis of tuberculosis in the wild boar (Sus scrofa): a comparison of methods applicable to hunter-harvested animals. PLoS One. 5(9):e12663. https://doi.org/10.1371/journal.pone.0012663.PMID:20844754;PMCID:PMC2937024

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos N, Almeida V, Gortázar C et al (2015) Patterns of Mycobacterium tuberculosis-complex excretion and characterization of super-shedders in naturally-infected wild boar and red deer. Veterinary Research 46:129. https://doi.org/10.1186/s13567-015-0270-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos N, Richomme C, Nunes T, Vicente J, Alves PC, de la Fuente J, Correia-Neves M, Boschiroli M-L, Delahay R, Gortázar C (2020) Quantification of the animal tuberculosis multi-host community offers insights for control. Pathogens 9:421. https://doi.org/10.3390/pathogens9060421

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson VR (2002) Wild animals as reservoirs of infectious diseases in the UK. Veterinary Journal 163(2) https://doi.org/10.1053/tvjl.2001.0662

  • Smith NH, Kremer K, Inwald J, Dale J, Driscoll JR, Gordon SV, Van Soolingen D, Glyn Hewinson R, Maynard Smith J (2006) Ecotypes of the Mycobacterium tuberculosis complex. Journal of Theoretical Biology 239(2) https://doi.org/10.1016/j.jtbi.2005.08.036

  • Smith NH, Berg S, Dale J, Allen A, Rodriguez S, Romero B, Matos F, Ghebremichael S, Karoui C, Donati C, Machado AC, Mucavele C, Kazwala RR, Hilty M, Cadmus S, Ngandolo BNR, Habtamu M, Oloya J, Muller A, Kremer K (2011) European 1: a globally important clonal complex of Mycobacterium bovis. Infection, Genetics and Evolution 11(6):1340–1351. https://doi.org/10.1016/J.MEEGID.2011.04.027

    Article  PubMed  Google Scholar 

  • Steingrube VA, Brown BA, Gibson JL, Wilson RW, Brown J, Blacklock Z, Jost K, Locke S, Ulrich RF, Wallace RJ (1995) DNA amplification and restriction endonuclease analysis for differentiation of 12 species and taxa of Nocardia, including recognition of four new taxa within the Nocardia asteroides complex. Journal of Clinical Microbiology 33(12) https://doi.org/10.1128/jcm.33.12.3096-3101.1995

  • Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T, Bottger EC, Bodmer T (1993) Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. Journal of Clinical Microbiology 31(2):175–178. https://doi.org/10.1128/jcm.31.2.175-178.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa J, Nakajima C, Gairhe KP, Maharjan B, Paudel S, Shah Y, Mikota SK, Kaufman GE, McCauley D, Tsubota T, Gordon SV, Suzuki Y (2017) Wildlife tuberculosis: an emerging threat for conservation in south Asia. In: Global Exposition of Wildlife Management. https://doi.org/10.5772/65798

    Article  Google Scholar 

  • Varela-Castro L, Alvarez V, Sevilla IA, Barral M (2020) Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area. PLoS ONE 15(4) https://doi.org/10.1371/journal.pone.0231559

  • Vicente J, Barasona JA, Acevedo P, Ruiz-Fons JF, Boadella M, Diez-Delgado I, Beltran-Beck B, González-Barrio D, Queirós J, Montoro V, de la Fuente J, Gortazar C (2013) Temporal trend of tuberculosis in wild ungulates from mediterranean Spain. Transboundary and Emerging Diseases 60(SUPPL1) https://doi.org/10.1111/tbed.12167

  • Zumarraga MJ, Meikle V, Bernardelli A, Abdala A, Tarabla H, Romano MI, Cataldi A, Zumárraga MJ, Meikle V, Bernardelli A, Abdala A, Tarabla H, Romano MI, Cataldi A (2005) Use of touch-down polymerase chain reaction to enhance the sensitivity of Mycobacterium Bovis detection. Journal of Veterinary Diagnostic Investigation 17(3):232–238. https://doi.org/10.1177/104063870501700303

    Article  PubMed  Google Scholar 

  • Zumárraga MJ, Arriaga C, Barandiaran S, Cobos-marín L, Waard J, Estrada-garcia I, Figueuredo T, Gimenez F, Gomes HM, Gonzalez y Merchand JA, Macías A, Milián-Suazo F, Rodriguez CAR, Santillán MA, Suffys PN, Trangoni MD, Zárraga AM, Cataldi AA (2013) Understanding the relationship between Mycobacterium bovis spoligotypes from cattle in Latin American countries. Research in Veterinary Science 94:9–21. https://doi.org/10.1016/j.rvsc.2012.07.012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

SB, LFLS and MJZ are career members of CONICET. The authors are grateful to Mg. Jorge Hart from SENASA for the statistical information of bTB provided and also National Park administration (APN) for the cooperation.

Funding

This work was supported by grants from the Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, UBACyT, 200 201902 00309 BA; Fondo para la Investigación Científica y Tecnológica, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) Proyectos de Investigación Científica y Tecnológica (PICT) 2018-03784 and (PICT) 2018-599; Instituto Nacional de Tecnología Agropecuaria (INTA) (PD-E5 I103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jimena Marfil.

Ethics declarations

Ethical Approval

Ethical approval and permits for animal experimentation are not applicable for the present study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barandiaran, S., Marfil, M.J., La Sala, L.F. et al. Tuberculosis in Wild Pigs from Argentina. EcoHealth 21, 71–82 (2024). https://doi.org/10.1007/s10393-024-01681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-024-01681-y

Keywords

Navigation