Log in

40Ar/39Ar dating and palaeoenvironments at the boundary of the early-late Badenian (Langhian-Serravallian) in the northwest margin of the Pannonian basin system

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The sedimentary fill of the Danube Basin represents the northwestern part of the Central Paratethys Sea. The middle Miocene opening of the basin was associated with volcanic activity. The altered tuff to tuffite layers from the northwest part of the Danube Basin occurs within the NN5 Zone and are accompanied by volcanic sediments with andesite clasts. The biotite 40Ar/39Ar age of 13.23 ± 1.95 Ma from the Trakovice-4 (1401–1406 m) tuff to tuffite layer covers a large time span, and this is caused by the fine grain size and alterations to biotite crystals. Nevertheless, the age range thus obtained agrees with biostratigraphic ranking. Fresh amphiboles from the Madunice-3 (1200–1195 m) volcanic sandstone give a more accurate age of 13.83 ± 0.11 Ma, and date the maximum fall in sea level to the beginning of late Badenian (Serravallian). The comparison of age data obtained from sedimentological, biostratigraphic and ecological analyses documents the following: (1) major deposition and subsidence took place in the Blatné depression during the late Badenian (early Serravallian, 13.82–12.6 Ma); (2) although the beginning of late Badenian stage is marked by the Badenian Salinity Crisis, only siliciclastic deposition is recorded within the Danube Basin; (3) during the entire late Badenian stage, upwelling conditions (estuarine circulation) are linked with diversified microfossil associations and dysoxic periods; (4) Moreover, the 40Ar/39Ar age of 13.83 ± 0.11 Ma supports the employment of Globoturborotalita druryi as an index fossil for the onset of the late Badenian. Thus, the Danube Basin represents a location with a well recognised 13.8 Ma early/late Badenian (Langhian /Serravallian) boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Rybár et al. 2016)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Spezzaferri S, Tamburini F (2007) Paleodepth variations on the Eratosthenes Seamount (Eastern Mediterranean): sea level changes or subsidence. Earth Discussions 2(3):115–132

    Article  Google Scholar 

  • Akers WH (1955) Some planktonic foraminifers of the American gulf coast and suggested correlations with the Caribbean Tertiary. J Paleontol 29(4):647–664

    Google Scholar 

  • Alonghi DM (1998) Coastal ecosystem processes. CRC Press, Boca Raton, p 419p

    Google Scholar 

  • Andò S, Garzanti E, Padoan M, Limonta M (2012) Corrosion of heavy minerals during weathering and diagenesis: a catalog for opticalanalysis. Sed Geol 280:165–178. https://doi.org/10.1016/j.sedgeo.2012.03.023

    Article  Google Scholar 

  • Báldi K (2006) Paleoceanography and climate of the Badenian (Middle Miocene, 16.4 –13.0 Ma) in the Central Paratethys based on foraminifera and stable isotope (δ18O and δ13C) evidence. Int J Earth Sci (geol Rundsch) 95:119–142. https://doi.org/10.1007/s00531-005-0019-9

    Article  Google Scholar 

  • Báldi-Béke M (1984) The nannoplankton of the Transdanubian Paleogene formations Geologica Hungarica. Series Paleontologica 43:151–307

    Google Scholar 

  • Bartakovics A, Hudáčková N (2004) Agglutinated foraminifera from the Spiroplectammina carinata Zone (Middle Badenian) of the NE part of Vienna Basin (Slovak part). In: Proceedings of the 6th International Workshop on Agglutinated Foraminifera, Grzybowski Foundation, 69–82.

  • Biela A (1978) Hlboké vrty v zakrytých oblastiach vnútorných Západných Karpát I. Regionálna Geológia Západných Karpát 10:224p

    Google Scholar 

  • Blow WH (1959a) Age, correlation and biostratigraphy of the Upper Tocuyo (San Lorenzo) and Pozon formations, Eastern Falcon, Venezuela. Bullet Am Paleontol 39:67–251

    Google Scholar 

  • Blow WH (1959b) The classification and stratigraphical distribution of the Globigerinaceae. Palaeontology 2:1–27

    Google Scholar 

  • Boltovskoy E, Wright R (1976) Recent Foraminifera. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2860-7

    Book  Google Scholar 

  • Bown PR (1998) Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society, Publications Series, Chapman & Hall, London, p 315p

    Book  Google Scholar 

  • Brönnimann P (1951) The genus Orbulina d'Orbigny in the Oligo-Miocene of Trinidad, B.W.I. Contributions from the Cushman Foundation for Foraminiferal Research, 2, 4, 132–138.

  • Bukry D (1974) Coccolith stratigraphy, offshore Western Australia, Deep Sea Drilling Project Leg 27. Initial Rep Deep-Sea Drilling Project 27:623–630

    Google Scholar 

  • Cachão M, Moita MT (2000) Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia. Mar Micropaleontol 39:131–155. https://doi.org/10.1016/S0377-8398(00)00018-9

    Article  Google Scholar 

  • Chernyshev I, Konečný V, Lexa J, Kovalenker VA, Jeleň S, Lebedev VA, Goltsman YV (2013) K–Ar and Rb–Sr geochronology and evolution of the Štiavnica Stratovolcano (Central Slovakia). Geol Carpath 64(4):327–351. https://doi.org/10.2478/geoca-2013-0023

    Article  Google Scholar 

  • Cicha I, Zapletalová I (1963) Wichtige Vertreter der Familie Lituolidae Reuss, 1861 (Foraminifera), aus dem Miozän der Westkarpaten. Sborník Geologických Věd, Řada P, Paleontologie 1:75–121

    Google Scholar 

  • Cicha I, Rögl F, Rupp Ch, Čtyroká J (1998) Oligocene-Miocene Foraminifera of the Central Paratethys. Abhandlungen Der Senckenbergischen Naturforschenden Gessellschaft 549:1–325

    Google Scholar 

  • Cicha I, Čtyroká J, Jiřiček R, Zapletalová I (1975) Principal biozones of the Late Tertiary in Eastern Alps and West Carpathians. In: Cicha, I., (Ed.), Biozonal division of the Upper Tertiary basins of the Eastern Alps and West Carpathians. IUGS Proceedings of the VI Congress Bratislava, 19–34

  • Cifelli R (1961) Globigerina incompta, a new species of pelagic foraminifera from the North Atlantic. Contrib Cushman Foundation Foraminiferal Res 12:83–86

    Google Scholar 

  • Csibri T, Rybár S, Šarinová K, Jamrich M, Sliva Ľ, Kováč M (2018) Miocene fan delta conglomerates in the north-western part of the Danube Basin: provenance, paleoenvironment, paleotransport and depositional mechanisms. Geol Carpath 69(5):467–482. https://doi.org/10.1515/geoca-2018-0027

    Article  Google Scholar 

  • Cushman JA (1923) The Foraminifera of the Atlantic Ocean pt. 4: Lagenidae. Bullet United States Natl Museum 104:i–228

    Article  Google Scholar 

  • Cushman JA, Parker FL (1937) Notes on some European Miocene species of Bulimina. Contrib Cushman Labor Foraminiferal Res 13(2):46–54

    Google Scholar 

  • Cushman JA, Ponton JM (1932) An Eocene foraminiferal fauna of Wilcox age from Alabama. Contrib Cushman Labor Foraminiferal Res 8(3):51–72

    Google Scholar 

  • de Leeuw A, Bukowski K, Krijgsman W, Kuiper KF (2010) Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology 38(8):715–718. https://doi.org/10.1130/G30982.1

    Article  Google Scholar 

  • de Leeuw A, Tulbure M, Kuiper KF, Melinte-Dobrinescu MC, Stoica M, Krijgsman W (2018) New 40Ar/39Ar, magnetostratigraphic and biostratigraphic constraints on the termination of the Badenian Salinity Crisis: Indications for tectonic improvement of basin interconnectivity in Southern Europe. Global Planet Change 169:1–15. https://doi.org/10.1016/j.gloplacha.2018.07.001

    Article  Google Scholar 

  • d’Orbigny AD (1826) Tableau méthodique de la classe des Céphalopodes. Ann Sci Nat 7(96–169):245–314

    Google Scholar 

  • d‘Orbigny AD (1839) Foraminifères. In: de la Sagra R., A. Bertrand, Histoire physique politique et naturelle de lile de Cuba. NY

  • d’Orbigny AD (1846) Die fossilen Foraminiferen des tertiären Beckens von Wien. Foraminifères fossiles du bassin tertiaire de Vienne, Gide et Comp Libraries editeurs, Paris

    Google Scholar 

  • Emery D, Myers KJ (1996) Sequence stratigraphy. Blackwell, Oxford, UK, p 297p

    Book  Google Scholar 

  • Felder DL, Camp DK (eds) (2009) Gulf of Mexico origin waters and biota biodiversity. A&M Press, Texas

    Google Scholar 

  • Fordinál K, Zágoršek K, Zlinská A (2006) Early Sarmatian biota in the northern part of the Danube Basin (Slovakia). Geologica Carphatica 57(2):123–130

    Google Scholar 

  • Fusán O, Biely A, Ibrmajer J, Plančár J, Rozložník L (1987) Basement of the Tertiary of the inner West Carpathians. State Geological Institute of Dionýz Štúr, Bratislava

    Google Scholar 

  • Gooday AJ (2001) Benthic foraminifera. In: Steele John H, Thorpe Steve A, Turekian Karl K (eds) Encyclopedia of Ocean Sciences. Academic Press, San Diego, USA

    Google Scholar 

  • Grill R (1943) Über mikropaläontologische Gliederungsmöglichkeiten im Miozän des Wiener Becken. Mitteilungen Der Reichsamts Für Bodenforschung 6:33–44

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Haq BU (1980) Biogeographic history of Miocene calcareous nannoplankton and paleoceanography of the Atlantic Ocean. Micropaleontology 26:414–443

    Article  Google Scholar 

  • Harzhauser M, Piller W (2007) Benchmark data of a changing sea — Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31. https://doi.org/10.1016/j.palaeo.2007.03.031

    Article  Google Scholar 

  • Harzhauser M, Grunert P, Mandic O, Lukeneder P, Gallardo ÁG, Neubauer TA, Carnevale G, Landau BM, Sauer R, Strauss P (2018) Middle and late Badenian palaeoenvironments in the northern Vienna Basin and their potential link to the Badenian Salinity Crisis. Geologica Carphatica 69:149–168. https://doi.org/10.1515/geoca-2018-0009

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Marech WV, Martin RF, Schumacher JC, Welch MD (2012) IMA Report - Nomenclature of the amphibole supergroup. Am Miner 97:2031–2048. https://doi.org/10.2138/am.2012.4276

    Article  Google Scholar 

  • Hofmann C, Feraud G, Courtillot V (2000) 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth Planet Sci Lett 180(1–2):13–27. https://doi.org/10.1016/S0012-821X(00)00159-X

    Article  Google Scholar 

  • Hohenegger J, Andersen N, Baldi K, Coric S, Pervesler P, Rupp Ch, Wagreich M (2008) Paleoenvironment of the Early Badenian (Middle Miocene) in the southern Vienna Basin (Austria) - multivariate analysis of the Baden-Sooss section. Geol Carpath 59(5):461–488

    Google Scholar 

  • Hók J, Kováč M, Kováč P, Nagy A, Šujan M (1999) Geology and tectonics of the NE part of Komjatice Depression. Slovak Geological Magazine 5(3):187–199

    Google Scholar 

  • Hók J, Kováč M, Pelech O, Pešková I, Vojtko R, Králiková S (2016) The Alpine tectonic evolution of the Danube Basin and its northern periphery (southwestern Slovakia). Geol Carpath 67(5):495–505. https://doi.org/10.1515/geoca-2016-0031

    Article  Google Scholar 

  • Holbourn A, Henderson A, MacLeod N (2013) Atlas of Benthic Foraminifera. Natural History Museum

    Book  Google Scholar 

  • Holcová K, Dašková J, Fordinál K, Hrabovský J, Milovský R, Scheiner F, Vacek F (2019) A series of ecostratigraphic events across the Langhian/Serravallian boundary in an epicontinental setting: the northern Pannonian Basin. Facies 65:36. https://doi.org/10.1007/s10347-019-0576-1

    Article  Google Scholar 

  • Hosius A (1895) Beitrag zur Kenntnis der Foraminiferenfauna des Ober-Oligozäns von Doberg bei Bünde, II. Teil. Naturwissenschaftlichen Vereins Zu Osnabrück, Jahresberichte 10:1–167

    Google Scholar 

  • Hudáčková N, Hudáček J (2004) Databáza fosílií – technické spracovanie. Mineralia Slovaca, Geovestník 36(2):24

    Google Scholar 

  • Hudáčková N, Kováč M (1993) The Upper Badenian—Sarmatian events in the area of the Vienna Basin eastern margin. Mineralia Slovaca 25:202–210

    Google Scholar 

  • Hudáčková N, Zlinská A (2010) Paleoecological interpretation of the lower Sarmatian sediments from the Malacky and Pernek vicinity (Slovak part of Vienna Basin). Mineralia Slovaca 42:419–428

    Google Scholar 

  • Hudáčková N, Soták J, Ruman A, Rybár S, Milovský R (2018a) Marsh-type agglutinated foraminifera from Upper Miocene sediments of the Danube Basin. Micropaleontology 64(5–6):481–492

    Article  Google Scholar 

  • Hudáčková N, Halásová E, Kováčová M, Rybár S, Kováč M (2013) High resolution study of the holotype locality of the CPN8 Zone (Globigerina druryi – Globigerina decoraperta). In: Bąk M, Kowal-Kasprzyk J, Waśkowska A, Kaminski MA (eds) 14th Czech Slovak Polish Paleontological Conference and 9th Micropalaeontological Workshop, Abstracts Volume. Grzybowski Foundation Special Publication, NY

    Google Scholar 

  • Hudáčková N, Kováč M, Ruman A, Halásová E, Jamrich M, Kováčová M, Rybár S, Šujan M, Šarinová K (2018b) Biostratigraphic study: Špačince-4 and Dubové-2 wells, Manuscript, archív Nafta a.s., 33p

  • Hudáčková N, Holcová K, Halásová K, Kováčová M, Doláková N, Trubač J, Rybár S, Ruman A, Stárek D, Šujan M, Jamrich M, Kováč M (2020) The Pannonian Basin System northern margin paleogeography, climate, and depositional environments in the time range during MMCT (Central Paratethys Novohrad-Nógrád Basin, Slovakia). Palaeontologia Electronica. https://doi.org/10.26879/1067

    Book  Google Scholar 

  • Hyžný M, Hudáčková N, Biskupič R, Rybár S, Fuksi T, Halásová E, Zágoršek K, Jamrich M, Ledvák P (2012) Devínska Kobyla – a window into the Middle Miocene shallow-water marine environments of the Central Paratethys (Vienna Basin, Slovakia). Acta Geologica Slovaca 4(2):95–111

    Google Scholar 

  • Ivanička J, Kohút M (eds) (2011) Vysvetlivky ku geologickej mape Považského Inovca a jv Časti Trenčianskej kotliny 1:50 000. ŠGDÚŠ, Bratislava

    Google Scholar 

  • Jamrich M, Halásová E (2010) The evolution of the Late Badenian calcareous nannofossil assemblages as a reflexion of the palaeoenvironmental changes of the Vienna Basin (Devínska Nová Ves – claypit). Acta Geologica Slovaca 2(2):123–140

    Google Scholar 

  • Maglay J (ed) (2011) Vysvetlivky ku geologickej mape Podunajskej nížiny Trnavskej pahorkatiny 1: 50,000. Štátny geologický ústav Dionýza Štúra, Bratislava

    Google Scholar 

  • John CM, Karner GD, Mutti M (2004) δ18O and Marion plateau backstrip**: Combining two approaches to constrain late middle Miocene eustatic amplitude. Geology 32(9):829–832. https://doi.org/10.1130/G20580.1

    Article  Google Scholar 

  • John CM, Karner GD, Browning ER, Leckie M, Mateo Z, Carson B, Lowery Ch (2011) Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin. Earth Planet Sci Lett 304(3–4):455–467. https://doi.org/10.1016/j.epsl.2011.02.013

    Article  Google Scholar 

  • Jorissen FJ, de Stigter HC, Widmark JGV (1995) A conceptual model explaining benthic foraminiferal microhabitats. Mar Micropaleontol 22:3–15

    Article  Google Scholar 

  • Jourdan F, Renne P (2007) Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards. Geochim Cosmochim Acta 71:387–402. https://doi.org/10.1016/j.gca.2006.09.002

    Article  Google Scholar 

  • Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22:719–722. https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2

  • Kantor J (1987) Izotopický výskum a rádiometrické datovanie z okolia veľkej Bratislavy. Geofond Bratislava

    Google Scholar 

  • Kominz MA, Browning JV, Miller KG, Sugarman PJ, Mizintseva S, Scotese CR (2008) Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Res 20:211–226. https://doi.org/10.1111/j.1365-2117.2008.00354.x

    Article  Google Scholar 

  • Koppers AAP (2002) ArArCALC-software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619. https://doi.org/10.1016/S0098-3004(01)00095-4

    Article  Google Scholar 

  • Koubová I, Hudáčková N (2010) Foraminiferal successions in the shallow water Sarmatian sediments from the MZ 93 borehole (Vienna Basin, Slovak part). Acta Geologica Slovaca 2(1):47–58

    Google Scholar 

  • Kováč M, Hudáčková N, Halásová E, Kováčová M, Holcová K, Oszczypko-Clowes M, Báldi K, Less G, Nagymarosy A, Ruman A, Klučiar T, Jamrich M (2017) The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca 9(2):75–114

    Google Scholar 

  • Kováč M, Halásová E, Hudáčková N, Holcová K, Hyžný M, Jamrich M, Ruman A (2018a) Towards better correlation of the Central Paratethys regional timescale with the standard geological timescale of the Miocene Epoch. Geologica Carphatica 69(3):283–300. https://doi.org/10.1515/geoca-2018-0017

    Article  Google Scholar 

  • Kováč M, Rybár S, Halásová E, Hudáčková N, Šarinová K, Šujan M, Baranyi V, Kováčová M, Ruman A, Klučiar T, Zlinská A (2018b) Changes in Cenozoic depositional environment and sediment provenance in the Danube Basin. Basin Res 30:97–131. https://doi.org/10.1111/bre.12244

    Article  Google Scholar 

  • Kováč M (2000) Geodynamic, Paleogeographic and structura ldevelopment of the Carpatho-Pannonian region during the Miocene: New view on the Neogene basins of Slovakia. Veda, Bratislava

    Google Scholar 

  • Kováčová P, Hudáčková N (2009) Late Badenian foraminifers from the Vienna Basin (Central Paratethys): stable isotope study and paleoecological implications. Geol Carpath 60(1):59–70. https://doi.org/10.2478/v10096-009-0006-3

    Article  Google Scholar 

  • Langer MR (1993) Epiphytic foraminifera. Mar Micropaleontol 20(3–4):235–265. https://doi.org/10.1016/0377-8398(93)90035-V

    Article  Google Scholar 

  • Lankreijer A, Kováč M, Cloetingh S, Pitonák P, Hlôška M, Biermann C (1995) Quantitative subsidence analysis and forward modeling of the Vienna and Danube Basins: thin-skinned versus thick-skinned extension. Tectonophysics 252:433–451. https://doi.org/10.1016/0040-1951(95)00099-2

    Article  Google Scholar 

  • Lirer F, Foresi LM, Iaccarino SM, Salvatorini G, Turco E, Cosentino C, Sierro FJ, Caruso A (2019) Mediterranean Neogene planktonic foraminifer biozonation and biochronology. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2019.05.013

    Article  Google Scholar 

  • Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11. https://doi.org/10.1016/j.cageo.2013.09.011

    Article  Google Scholar 

  • Loeblich AR, Tappan H (1992) Present status of foraminiferal classification, 93–102. In: Takayanagi Y, Saito T (eds.) Studies in Benthic Foraminifera. Proceedings of the Fourth International Symposium on Benthic Foraminifera Benthos ’90, Sendai 1990. Tokai University Press, Tokyo.

  • Łuczkowska E (1955) Tortonian Foraminifera from the Chodenice and Grabowiec Beds in the Vicinity of Bochnia. Annales Societatis Geologorum Poloniae, Krakow 23(1953):77–156

    Google Scholar 

  • Łuczkowska E (1974) Miliolidae Foraminiferida from the Miocene of Poland Part II Biostratigraphy palaeoecology and systematics. Acta Palaeontologica Polonica 19(1):3–176

    Google Scholar 

  • Łuczkowska E (1990) Stratigraphically Important Agglutinated Foraminifera in the Badenian Miocene M4 of Poland. In: Hemleben C, Kaminski MA, Kuhnt W, Scott DB (eds) Paleoecology Biostratigraphy Paleoceanography and Taxonomy of Agglutinated Foraminifera NATO ASI Series Series C Mathematical and Physical Sciences. Springer, Dordrecht

    Google Scholar 

  • Mandic O, Sant K, Kallanxhi M-E, Ćorić S, Theobalt D, Grunert P, de Leeuw A, Krijgsman W (2019) Integrated bio-magnetostratigraphy of the Badenian reference section Ugljevik in southern Pannonian Basin – implications for the Paratethys history (middle Miocene, Central Europe). Global Planet Change 172:374–395. https://doi.org/10.1016/j.gloplacha.2018.10.010

    Article  Google Scholar 

  • Martini E (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A. ed. Proceedings of the Second Planktonic Conference Roma Edizioni Tecnoscienza, Rome

  • Montfort P (1808) Conchyliologie systématique et classification méthodique des coquilles. Schoell, Paris

    Book  Google Scholar 

  • Montfort P (1810) Conchyliologie systématique et classification méthodique des coquilles. Schoell, Paris

    Google Scholar 

  • Morton AC (1984) Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Miner 19:287–308. https://doi.org/10.1180/claymin.1984.019.3.04

    Article  Google Scholar 

  • Morton AC, Hallsworth CR (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sed Geol 124:3–29

    Article  Google Scholar 

  • Murray JW (1973) Distribution and ecology of benthic foraminiferids. Heinemann Educational Books, London, p 274p

    Google Scholar 

  • Murray JW (2006) Ecology and Applications of Benthic Foraminifera. Cambridge University Press, Cambridge, p 440p

    Book  Google Scholar 

  • Murray JW, Alve E, Jones BW (2011) A new look at modern agglutinated benthic foraminiferal morphogroups: their value in palaeoecological interpretation. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2011.06.006

    Article  Google Scholar 

  • Nemčok M, Marko F, Kovač M, Fodor L (1989) Neogene tectonics and paleostress changes in the Czechoslovakian part of the Vienna Basin. Jb Geol Bundesanst 132(2):443–458

    Google Scholar 

  • Ogg J, Ogg G, Gradstein F (2016) A Concise Geologic TimeScale. Elsevier

    Google Scholar 

  • Okada H, Honjo S (1973) The distribution of oceanic coccolithophorids in the Pacific. Deep-Sea Res 20:365–374

    Google Scholar 

  • Ozdínová S (2008) Badenian calcareous nannofossils from Semerovce ŠV-8 and Cífer-1 boreholes (Danube Basin). Mineralia Slovaca 40:141–150

    Google Scholar 

  • Papp A, Turnovsky K (1953) Die Entwicklung der Uvigerinen im Vindobon (Helvet und Torton) des Wiener Beckens. Jahrbuch Der Geologischen Bundesanstalt, Wien 96(1):117–142

    Google Scholar 

  • Parr WJ (1950) Foraminifera B A N Z Antarctic Research Expedition. Report 5(6):232–392

    Google Scholar 

  • Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra Carpathian area. Geologica Carphatica 57(6):511–530

    Google Scholar 

  • Perch-Nielsen K (1985) Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton Stratigraphy. Cambridge University Press, Cambridge, pp 427–554

    Google Scholar 

  • Peryt D, Gedl P, Peryt TM (2014) Foraminiferal and palynological records of the Late Badenian Middle Miocene transgression in Podolia Shchyrets near Lviv western Ukraine. Geological Quarterly. https://doi.org/10.7306/gq.1195

    Article  Google Scholar 

  • Pezelj Ð, Mandic O, Ćorić S (2013) Paleoenvironmental dynamics in the southern Pannonian Basin during initial Middle Miocene marine flooding. Geol Carpath 64(1):81–100. https://doi.org/10.2478/geoca-2013-0006

    Article  Google Scholar 

  • Polák M (ed) (2012) Explanations for the geological map of the Malé Karpaty Mts 1:50 000. State geological institute of Dionýz Štúr, Bratislava

    Google Scholar 

  • Popescu G (1970) Planktonic foraminiferal zonation in the Dej tuff complex. Revue Roumaine De Geologie, Geophysique Et Geographie, Serie De Geologie 14:189–203

    Google Scholar 

  • Popescu G, Crihan I-M (2011) Middle Miocene Globigerinas of Romania. Acta Palaentologica Romaniea 7:291–314

    Google Scholar 

  • Raffi I, Wade BS, Pälike H, Beu AG, Cooper R, Crundwell MP, Krijgsman W, Moore T, Raine I, Sardella R, Vernyhorova YV (2020) Chapter 29 The Neogene Period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) Geologic Time Scale. Elsevier

    Google Scholar 

  • Rahman A, Roth PH (1990) Late Neogene paleoceanography and paleoclimatology of the Gulf of Aden region based on calcareous nannofossils. Paleoceanograph Paleoclimatol 5:91–107. https://doi.org/10.1029/PA005i001p00091

    Article  Google Scholar 

  • Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 75(17):5097–5100. https://doi.org/10.1016/j.gca.2010.06.017

    Article  Google Scholar 

  • Renne PR, Balco G, Ludwig KR, Mundil R, Min K (2011) Response to the comment by W.H. Schwarz, et al  on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010). Geochim Cosmochim Acta 74:5349–5367. https://doi.org/10.1016/j.gca.2011.06.021

    Article  Google Scholar 

  • Renne PR, Deino AL, Hilgen FJ, Kuiper KF, Mark DF, Mitchell WS III, Morgan LE, Mundil R, Smit J (2013) Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339(6120):684–687. https://doi.org/10.1126/science.1230492

    Article  Google Scholar 

  • Reuss AE (1867) Die fossile Fauna der Steinsalzablagerung von Wieliczka in Galizien. Sitzungsberichte der mathematisch naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften. 55(1):17–182

    Google Scholar 

  • Rider M (2011) The Geological Interpretation of well logs, 3rd edn. Gulf Publishing Company, Houston, p 280p

    Google Scholar 

  • Rossi VM, Perillo MM, Steel RJ, Olariu C (2017) Quantifying mixed-process variability in shallow-marine depositional systems: what are sedimentary structures really telling us? J Sediment Res 87:1060–1074. https://doi.org/10.2110/jsr.2017.49

    Article  Google Scholar 

  • Ruman A, Rybár S, Hudáčková N, Šujan M, Halásová E (2017) Depositional environment changes during the early–late Serravallian boundary dated by the Central Paratethys bioevents. Facies 63:9. https://doi.org/10.1007/s10347-016-0490-8

    Article  Google Scholar 

  • Rupp C, Hohenegger J (2008) Paleoecology of planktonic foraminifera from the Baden-Sooss section (Middle Miocene, Badenian, Vienna Basin, Austria). Geol Carpath 59(5):425–445

    Google Scholar 

  • Rybár S, Halásová E, Hudáčková N, Kováč M, Kováčová M, Šarinová K, Šujan M (2015) Biostratigraphy, sedimentology and paleoenvironments of the northern Danube Basin: Ratkovce-1 well case study. Geol Carpath 66(1):51–67. https://doi.org/10.1515/geoca-2015-0010

    Article  Google Scholar 

  • Rybár S, Kováč M, Šarinová K, Halásová E, Hudáčková N, Šujan M, Kováčová M, Ruman A, Klučiar T (2016) Neogene changes in paleogeography, paleoenvironment and the provenance of sediment in the northern Danube Basin. Bull Geosci 91(2):367–398. https://doi.org/10.3140/bull.geosci.1571

    Article  Google Scholar 

  • Rybár S, Šarinová K, Sant K, Kuiper K, Kováčová M, Vojtko R, Reiser M, Fordinál K, Teodoridis V, Nováková P, Vlček T (2019) New 40Ar/39Ar, fission track and sedimentological data on a middle Miocene tuff occurring in the Vienna Basin: Implications for the north-western Central Paratethys region. Geol Carpath 70(5):386–404. https://doi.org/10.2478/geoca-2019-0022

    Article  Google Scholar 

  • Sant K, Kuiper KF, Rybár S, Grunert P, Harzhauser M, Mandic O, Jamrich M, Šarinová K, Hudáčková N, Krijgsman W (2020) 40Ar/39Ar geochronology using high sensitivity mass spectrometry: Examples from middle Miocene horizons of the Central Paratethys. Geologica Carphatica. https://doi.org/10.31577/GeolCarp.71.2.5

    Article  Google Scholar 

  • Šarinová K, Rybár S (2018) Cummingtonite-bearing volcanic rocks: first evidence in the Central Slovak Volcanic Field. Geologica Carpathica. https://doi.org/10.1515/geoca-2018-0020

    Article  Google Scholar 

  • Šarinová K, Rybár S, Halásová E, Hudáčková N, Jamrich M, Kováčová M, Šujan M (2018) Integrated biostratigraphical, sedimentological and provenance analyses with implications for lithostratigraphic ranking: the Miocene Komjatice depression of the Danube Basin. Geologica Carpathica. https://doi.org/10.1515/geoca-2018-0023

    Article  Google Scholar 

  • Schmid ME (1971) Eine neue Uvigerina aus der Oberen Lagenidenzone(Badenien) des Wiener Beckens (Foraminifera, Uvigerinidae). Verhandlungen Der Geologischen Bundesanstalt 1:43–46

    Google Scholar 

  • Seguenza G (1880) Le formazioni terziarie nella provincia di Reggio (Calabria). Memorie Della Classe Di Scienze Fisiche Matematiche e Naturali Della Regia Accademia Del Lincei 3(6):1–445

    Google Scholar 

  • Sgarrella F, Moncharmont-Zei M (1993) Benthic Foraminifera of the Gulf of Naples (Italy): systematics and autoecology. Modena Bolletino Della Societa Paleontologica Italiana 32(2):145–264

    Google Scholar 

  • Śliwiński M, Bąbel M, Nejbert K, Olszewska-Nejbert D, Gąsiewicz A, Schreiber BCh, Benowitz JA, Layer P (2012) Badenian-Sarmatian chronostratigraphy in the Polish Carpathian Foredeep. Palaeogeogr Palaeoclimatol Palaeoecol 326–328:12–29. https://doi.org/10.1016/j.palaeo.2011.12.018

    Article  Google Scholar 

  • Spezzaferri S, Coric S, Hohenegger J, Rögl F (2002) Basin-scale paleobiogeography and paleoecology: an example from Karpatian (Latest Burdigalian) benthic and planktonic foraminifera and calcareous nannofossils from the Central Paratethys. Geobios 24:241–256. https://doi.org/10.1016/S0016-6995(02)00063-3

    Article  Google Scholar 

  • Šujan M, Braucher R, Kováč M, Bourlès D, Rybár S, Guillou G, Hudáčková N (2016) Application of the authigenic 10Be/9Be dating method to late Miocene-Pliocene sequences in the northern Danube Basin (Pannonian Basin System): confirmation of heterochronous evolution of sedimentary environments. Global Planet Change 137:35–53. https://doi.org/10.1016/j.gloplacha.2015.12.013

    Article  Google Scholar 

  • Šujan M, Kováč M, Hók J, Šujan M, Braucher R, Rybár S, de Leeuw A (2017) Late Miocene fluvial distributary system in the northern Danube Basin (Pannonian Basin System): depositional processes, strati graphic architecture and controlling factors of the Piešťany Member (Volkovce Formation). Geological Quarterly 61(3):521–548. https://doi.org/10.7306/gq.1360

    Article  Google Scholar 

  • Šujan M, Rybár S, Kováč M, Bielik M, Majcin D, Minár J, Plašienka D, Nováková P, Kotulová J (2021) The polyphase rifting and inversion of the Danube Basin revised. Global Planet Change 196:103375. https://doi.org/10.1016/j.gloplacha.2020.103375

    Article  Google Scholar 

  • Šujan M, Braucher R, Rybár S, Maglay J, Nagy A, Fordinál K, Šarinová K, Sýkora M, Józsa Š, ASTER Team, Kováč M (2018) Revealing the late Pliocene to Middle Pleistocene alluvial archive in the confluence of the Western Carpathian and Eastern Alpine rivers: 26Al/10Be burial dating from the Danube Basin (Slovakia). Sed Geol 377:131–146. https://doi.org/10.1016/j.sedgeo.2018.10.001

    Article  Google Scholar 

  • Harangi Sz, Vaselli O, Tonarini S, Szabo Cs, Harangi R, Coradossi N (1995) Petrogenesis of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain Volcanic Field (Western Hungary). Acta Vulcanol 7(2):173–187

    Google Scholar 

  • Sztanó O, Kováč M, Magyar I, Šujan M, Fodor L, Uhrin A, Rybár S, Csillag G, Tőkés L (2016) Late Miocene sedimentary record of the Danube / Kisalföld Basin interregional correlation of depositional systems, stratigraphy and structural evolution. Geol Carpath 67(6):525–542. https://doi.org/10.1515/geoca-2016-0033

    Article  Google Scholar 

  • Takayanagi Y, Saito T (1962) Planktonic foraminifera from the Nobori formation, Shikoku, Japan. Sci Rep Tohoku Univ Second Series (geology) 2(5):67–105

    Google Scholar 

  • Talling PJ, Masson DG, Sumner EJ, Malgesini G (2012) Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology 59(7):1937–2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x

    Article  Google Scholar 

  • Tischendorf G, Förster H-J, Gottesmann B, Rieder M (2007) True and brittle micas: composition and solid-solution series. Mineral Mag 71(3):285–320. https://doi.org/10.1180/minmag.2007.071.3.285

    Article  Google Scholar 

  • Todd R, Cloud PE, Low D, Schmidt RG (1954) Probable occurrence of Oligocene on Saipan. Am J Sci 252:673–682

    Article  Google Scholar 

  • Vass D (2002) Lithostratigraphy of Western Carpathians: Neogene and Buda Paleogene. State Geological Institute of Dionýz Štúr, Bratislava

    Google Scholar 

  • Vlček T, Šarinová K, Rybár S, Hudáčková N, Jamrich M, Šujan M, Franců J, Nováková P, Sliva Ľ, Kováč M, Kováčová M (2020) Paleoenvironmental evolution of Central Paratethys Sea and Lake Pannon during the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 559(1):109892. https://doi.org/10.1016/j.palaeo.2020.109892

    Article  Google Scholar 

  • Walanus A, Nalepka D (2006) POLPAL 2004, ver. 2006, http://bobas.ibpan. krakow.pl/instytut/polpal2004/polpal.htm.

  • Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/ 39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geoth Res 164:193–204. https://doi.org/10.1016/j.jvolgeores.2007.05.009

    Article  Google Scholar 

  • Winter A, Jordan RW, Roth PH (1994) Biogeography of living coccolithophores in ocean waters. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 161–177

    Google Scholar 

  • Young JR, Bown PR, Lees JA (2017) Nannotax3 website. International Nannoplankton Association. Accessed on 21 Apr. 2017. URL: http://www.mikrotax.org/Nannotax3

  • Young JR (1998) Neogene. In: Bown PR (ed) Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publication Series, 1st edn. Chapman & Hall, London, pp 225–265

  • Zlinská A, Hudáčková N, Koubová I (2010) Lower Sarmatian foraminifera from marginal marine environments in the Malacky Vicinity (ViennaBasin). Geol Výzk Mor Slez 17:104–106

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under contracts APVV-16-0121, APVV-15-0575, APVV-20-0120, APVV-17-0555, and the Ministry of Education, Science, Research and Sport of the Slovak Republic under VEGA-1/0346/20, VEGA-1/0526/21. We express gratitude to our reviewers Holger Gebhardt, and Valentina Hajek Tadesse together, with our editor Maurice Tucker for insightful comments and ideas which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Šarinová.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šarinová, K., Hudáčková, N., Rybár, S. et al. 40Ar/39Ar dating and palaeoenvironments at the boundary of the early-late Badenian (Langhian-Serravallian) in the northwest margin of the Pannonian basin system. Facies 67, 29 (2021). https://doi.org/10.1007/s10347-021-00637-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-021-00637-w

Keywords

Navigation