Log in

Characterization of Bread Wheat Genotypes Using Morpho-Phenological Attributes Related to Yield Under Terminal Heat Stress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Owing to the fluctuations in environmental conditions warrants wheat scientists to develop new heat tolerant cultivars which can significantly increase and stabilize wheat production. For the assessment of genetic variability, twenty wheat genotypes were evaluated to improve their yields under the climate change scenarios. The experiment was conducted at the experimental area of Department of Plant Breeding and Genetics, The Islamia University of Bahawalpur, Pakistan under randomized complete block design following factorial arrangement with three replications. Variety × Treatment × Year interaction of wheat genotypes was studied for various morpho-phenological traits under normal sowing and late sowing conditions for two years in field. Highly significant differences were found among all the genotypes for all traits. Stronger correlations among the studied traits under terminal heat stress over normal further revealed heat stress adversities. The eigenvalues of first three principal components (PCs) were greater than 1 therefore considered as significant explaining 68.50% and 57.33% cumulative variability present in genotypes under normal and late sowings, respectively. The PC biplots showed yield per plant with maximum variability with maximum length of the vector than rest of the parameters. SUBHANI-21 showed maximum yield and number of tillers per plant followed by LASANI-08 and UJALLA-16 for thousand grain weight under heat stress. Selection of the positively associated traits would be fruitful and the tolerant genotypes having heat stress tolerance potential could be utilized in future wheat breeding programs to develop high yielding and heat resilient genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed M (2020) Introduction to modern climate change. Cambridge University Press (Andrew E. Dessler)

    Google Scholar 

  • Ahmed M, Hassan FU, Aslam MA, Akram MN, Akmal M (2011) Regression model for the study of sole and cumulative effect of temperature and solar radiation on wheat yield. Afr J Biotechnol 10(45):9114–9121

    Article  Google Scholar 

  • Ali H, Iqbal N, Ahmad S, Shahzad AN, Sarwar N (2013) Performance of late sown wheat crop under different planting geometries and irrigation regimes in arid climate. Soil Till Res 130:109–119

    Article  Google Scholar 

  • Arya VK, Singh J, Kumar L, Kumar R, Kumar P, Chand P (2017) Genetic variability and diversity analysis for yield and its components in wheat (Triticum aestivum L.). Ind J Agric Res 51(2):13–22

    Google Scholar 

  • Dwivedi R, Prasad S, Jaiswal B, Kumar A, Tiwari A, Patel S, Pandey G (2017) Evaluation of wheat genotypes (Triticum aestivum L.) at grain filling stage for heat tolerance. Int J Pure Appl Biosci 5:971–975

    Article  Google Scholar 

  • Fan Y, Ma C, Huang Z, Abid M, Jiang S, Dai T, Han X (2018) Heat priming during early reproductive stages enhances thermo-tolerance to post-anthesis heat stress via improving photosynthesis and plant productivity in winter wheat (Triticum aestivum L.). Front Plant Sci 9:805–812

    Article  PubMed Central  PubMed  Google Scholar 

  • Fatima Z, Ahmed M, Hussain M, Abbas G, Ul-Allah S, Ahmad S, Hussain S (2020) The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci Rep 10:1–21

    Article  Google Scholar 

  • Gümüşçü A, Tenekeci ME, Bilgili AV (2020) Estimation of wheat planting date using machine learning algorithms based on available climate data. Sustain Comput: Inform Syst 28:300–308

    Google Scholar 

  • Hakim MA, Hossain A, da Silva JAT, Zvolinsky VP, Khan MM (2012) Protein and starch content of 20 wheat (Triticum aestivum L.) genotypes exposed to high temperature under late sowing conditions. J Sci Res 4(2):477–477

    Article  CAS  Google Scholar 

  • Ihsan MZ, El-Nakhlawy FS, Ismail SM, Fahad S, Daur I (2016) Wheat phenological development and growth studies as affected by drought and late season high temperature stress under arid environment. Front Plant Sci 7:795–802

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaur V, Behl R (2010) Grain yield in wheat as affected by short periods of high temperature, drought and their interaction during pre-and post-anthesis stages. Cereal Res Commun 38:514–520

    Article  Google Scholar 

  • Khan A, Ahmad M, Ahmed M, Gill KS, Akram Z (2021) Association analysis for agronomic traits in wheat under terminal heat stress. Saudi J Biol Sci 28:7404–7415

    Article  PubMed Central  PubMed  Google Scholar 

  • Khan MA, Iqbal HSMA, Akram MW (2022) Characterization of drought tolerance in bread wheat genotypes using physiological indices. Gesunde Pflanz 74(2):467–475

    Article  CAS  Google Scholar 

  • Khan MA, Waseem Akram M, Iqbal M, Ghulam Muhu-Din Ahmed H, Rehman A, Syed M. H, Iqbal A, Alam B (2023) Multivariate and association analyses of quantitative attributes reveal drought tolerance potential of wheat (Triticum aestivum L.) genotypes. Commun Soil Sci Plant Anal 54(2):178–195

    Article  CAS  Google Scholar 

  • Kwon SH, Torrie JH (1964) Heritability of and interrelationships among traits of two soybean populations 1. Crop Sci 4(2):196–198

    Article  Google Scholar 

  • Laghari KA, Sial MA, Arain MA (2012) Effect of high temperature stress on grain yield and yield components of wheat (Triticum aestivum L.). J Sci Technol Develop 31:83–90

    Google Scholar 

  • Li Z, He J, Xu X, ** X, Huang W, Clark B, Yang G, Li Z (2018) Estimating genetic parameters of DSSAT-CERES model with the GLUE method for winter wheat (Triticum aestivum L.) production. Comput Electron Agric 154:213–221

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610

    Article  CAS  PubMed  Google Scholar 

  • Mahmood S, Wahid A, Javed F, Basra SM (2010) Heat stress effects on forage quality characteristics of maize (Zea mays) cultivars. Int J Agric Biol 12:701–706

    CAS  Google Scholar 

  • Modarresi M, Mohammadi V, Zali A, Mardi M (2010) Response of wheat yield and yield related traits to high temperature. Cereal Res Commun 38:23–31

    Article  Google Scholar 

  • Mohammadi M, Karimizadeh R, Shefazeadeh MK (2012) Grain yield performance of bread wheat germplasm under heat and drought field conditions. Ann Biol Res 3:3149–3155

    Google Scholar 

  • Mohi-Ud-Din M, Hossain M, Rohman M, Uddin M, Haque M, Ahmed JU, Mostofa MG (2021) Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants 10:879. https://doi.org/10.3390/plants10050879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller J (1991) Determining leaf surface area by means of linear measurements in wheat and triticale (brief report). Arch Fruchtungsforsch 21:121–123

    CAS  Google Scholar 

  • Oyewole C (2016) The wheat crop. Kogi State Univ

    Google Scholar 

  • Riaz MW, Yang L, Yousaf MI, Sami A, Mei XD, Shah L, Rehman S, Xue L, Si H, Ma C (2021) Effects of heat stress on growth, physiology of plants, yield and grain quality of different spring wheat (Triticum aestivum L.) genotypes. Sustainability 13(5):2972

    Article  CAS  Google Scholar 

  • Sanad MN, Campbell KG, Gill KS (2016) Developmental program impacts phenological plasticity of spring wheat under drought. Bot Stud 57:1–12

    Article  CAS  Google Scholar 

  • Schindfessel C, Drozdowska Z, De Mooij L, Geelen D (2021) Loss of obligate crossovers, defective cytokinesis and male sterility in barley caused by short-term heat stress. Plant Reprod 34:243–253

    Article  CAS  PubMed  Google Scholar 

  • Steel R, Torrie J, Dickey D (1997) Principles and procedure of statistics. A biometrical approach, 3rd edn. McGraw-Hill, New York, pp 352–358

    Google Scholar 

  • Sulistyo SB, Woo WL, Dlay SS (2016) Regularized neural networks fusion and genetic algorithm based on-field nitrogen status estimation of wheat plants. IEEE Trans Indus Infor 13(1):103–114

    Article  Google Scholar 

  • Suryavanshi PB, Buttar GS (2016) Mitigating terminal heat stress in wheat. Int J Bio Res Stress Manag 7:142–150

    Google Scholar 

  • Talukder A, McDonald GK, Gill GS (2014) Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crop Res 160:54–63

    Article  Google Scholar 

  • Van Ogtrop F, Ahmad M, Moeller C (2014) Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorol Appl 21:431–443

    Article  Google Scholar 

  • Voosen P (2021) Global temperatures in 2020 tied record highs. American Association for the Advancement of Science

    Google Scholar 

  • Wang L, Xu J, Nian J, Shen N, Lai K, Hu J, Zhu L (2016) Characterization and fine map** of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul 78:345–356

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mueen Alam Khan.

Ethics declarations

Conflict of interest

M. A. Khan, M. U. Ayyub, A. Bashir and B. Alam declare that they have no competing interests.

Supplementary Information

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A., Ayyub, M.U., Bashir, A. et al. Characterization of Bread Wheat Genotypes Using Morpho-Phenological Attributes Related to Yield Under Terminal Heat Stress. Gesunde Pflanzen 75, 2377–2385 (2023). https://doi.org/10.1007/s10343-023-00883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00883-8

Keywords

Navigation