Log in

Real-Time Detection of Shot-Hole Disease in Cherry Fruit Using Deep Learning Techniques via Smartphone

  • Original Article
  • Published:
Applied Fruit Science Aims and scope Submit manuscript

Abstract

Nowadays, pesticides are generally used to control diseases and pests. However, many farmers often do not fully understand what diseases and pests are and the extent of their effects. For this reason, the optimal use time of pesticides may be missed, or excessive amounts of pesticides may be used. For this reason, early detection and identification of the disease and pest should be made. One of the methods that allows early detection is deep learning. In this study, deep learning methods were used to detect shot-hole disease, which causes damage to the fruit part of the cherry tree, one of the Prunus species, in real time via a smartphone. To achieve this determination, studies were first carried out on object recognition algorithms in three different methodologies. These models are YOLOv8s, DETR Transformer and RTMDet MMDetection. In the training and test results performed on the created hybrid dataset, it was seen that the most successful algorithm was YOLOv8s. For the YOLOv8s algorithm, mAP50, mAP50-95, precision and recall performance metrics were found to be 92.7%, 58.9%, 86.7% and 90.2%, respectively. Since YOLOv8s showed the highest successful performance, this algorithm was used in the study for real-time detection. In the real-time experiment, it was determined that it correctly detected 115 of 119 images on the test dataset with an F1 score value of over 80%. As the output of the study, a QR (Quick Response) code was created in the study so that real-time detection can be attempted with a smartphone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahsin Uygun.

Ethics declarations

Conflict of interest

T. Uygun and M.M. Ozguven declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uygun, T., Ozguven, M.M. Real-Time Detection of Shot-Hole Disease in Cherry Fruit Using Deep Learning Techniques via Smartphone. Applied Fruit Science 66, 875–885 (2024). https://doi.org/10.1007/s10341-024-01085-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-024-01085-w

Keywords

Navigation