Log in

Effect of Texture on the Grain-Size-Dependent Functional Properties of NiTi Shape Memory Alloys and Texture Gradient Design: A Phase Field Study

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Texture is inevitably introduced during the manufacturing of most NiTi shape memory alloys (SMAs), and the textured nanocrystalline NiTi has been extensively employed in engineering. However, the effect of texture, and the joint effect of grain size (GS) and texture on the functional properties of NiTi SMAs and the corresponding microscopic mechanisms have not been clearly understood yet. In this work, based on the phase field method, the effect of texture on the GS-dependent functional properties of NiTi SMAs, including super-elasticity (SE), one-way shape memory effect (OWSME), and stress-assisted two-way shape memory effect (SATWSME), is investigated, and the corresponding microscopic mechanisms are revealed. Moreover, the samples with discrete geometrical gradients and/or texture gradients are designed to achieve graded functional properties. The simulation results indicate that the dependence of functional properties on texture is due to the effect of crystallographic orientation on martensite transformation and reorientation, which can lead to different inelastic strains. In the designed samples with texture gradients, the stress–strain responses of sheets with various textures are different, allowing for the coordination of overall deformation of the sample by combining such sheets, with varying inelastic deformation degrees. Thus, the overall response of the sample differs from that without texture gradient, leading to the achievement of graded functional properties. The simulation results and new findings in this work contribute to a deeper understanding of the effects of texture, GS, and their interaction on the functional properties of SMAs, and provide valuable reference for the design and development of SMA-based devices with desired functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jani JM, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des. 2014;56:1078–113.

    Google Scholar 

  2. Sehitoglu H, Anderson R, Karaman I, Gall K, Chumlyakov Y. Cyclic deformation behavior of single crystal NiTi. Mater Sci Eng A. 2001;314:67–74.

    Google Scholar 

  3. Gall K, Maier HJ. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater. 2002;50:4643–57.

    ADS  CAS  Google Scholar 

  4. Pataky G, Ertekin E, Sehitoglu H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater. 2015;96:420–7.

    ADS  CAS  Google Scholar 

  5. Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ. Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater. 2004;52:3383–402.

    ADS  CAS  Google Scholar 

  6. Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV. Tension-compression asymmetry of the stress-strain in aged single crystal and polycrystalline NiTi. Acta Mater. 1999;47(4):1203–17.

    ADS  CAS  Google Scholar 

  7. Gall K, Yang N, Sehitoglu H, Chumlyakov YI. Fracture of precipitated NiTi shape memory alloys. Int J Fract. 2001;109(2):189–207.

    CAS  Google Scholar 

  8. Robertson SW, Gong XY, Ritchie RO. Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol. J Mater Sci. 2006;41(3):621–30.

    ADS  CAS  Google Scholar 

  9. Mao S, Luo J, Zhang Z, Wu M, Liu Y, Han X. EBSD studies of the stress induced B2–B19’ martensitic transformation in NiTi tubes under uniaxial tension and compression. Acta Mater. 2010;58(9):3357–66.

    ADS  CAS  Google Scholar 

  10. Liu Y, **e Z, Van Humbeeck J, Delaey L. Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta Mater. 1999;47(2):645–60.

    ADS  CAS  Google Scholar 

  11. Chang S, Wu S. Textures in cold-rolled and annealed Ti50Ni50 shape memory alloy. Scripta Mater. 2004;50(7):937–41.

    CAS  Google Scholar 

  12. Kim K, Daly S. The effect of texture on stress-induced martensite formation in nickel-titanium. Smart Mater Struct. 2013;22: 075012.

    ADS  CAS  Google Scholar 

  13. Laplanche G, Kazuch A, Eggeler G. Processing of NiTi shape memory sheets—microstructural heterogeneity and evolution of texture. J Alloy Compd. 2015;651:333–9.

    CAS  Google Scholar 

  14. Liu Y. The superelastic anisotropy in a NiTi shape memory alloy thin sheet. Acta Mater. 2015;95:411–27.

    ADS  CAS  Google Scholar 

  15. Wang L, Ma L, Liu C, Zhong Z, Luo S. Texture-induced anisotropic phase transformation in a NiTi shape memory alloy. Mater Sci Eng A. 2018;718:96–103.

    CAS  Google Scholar 

  16. Shuai J, **ao Y. In-situ study on texture-dependent martensitic transformation and cyclic irreversibility of superelastic NiTi shape memory alloy. Metall Mater Trans A. 2020;51A:562–7.

    ADS  Google Scholar 

  17. LePage WS, Shaw JA, Daly SH. Effects of texture on the functional and structural fatigue of a NiTi shape memory alloy. Int J Solids Struct. 2021;221:150–64.

    CAS  Google Scholar 

  18. Gao S, Yi S. Experimental study on the anisotropic behavior of textured NiTi pseudoelastic shape memory alloys. Mater Sci Eng A. 2003;362:107–11.

    Google Scholar 

  19. Daly S, Ravichandran G, Bhattacharya K. Stress-induced martensitic phase transformation in thin sheets of Nitinol. Acta Mater. 2007;55:3593–600.

    ADS  CAS  Google Scholar 

  20. Laplanche G, Birk T, Schneider S, Frenzel J, Eggeler G. Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys. Acta Mater. 2017;127:143–52.

    ADS  CAS  Google Scholar 

  21. Delville R, Malard B, Pilch J, Sittner P, Schryvers D. Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires. Int J Plast. 2011;27:282–97.

    CAS  Google Scholar 

  22. Ahadi A, Sun Q. Stress hysteresis loop and temperature dependence of phase transition stress in nanostructured NiTi–effects of grain size. Appl Phys Lett. 2013;103: 021902.

    ADS  Google Scholar 

  23. Ahadi A, Sun Q. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater. 2014;76:186–97.

    ADS  CAS  Google Scholar 

  24. Ahadi A, Sun Q. Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Mater. 2015;90:272–81.

    ADS  CAS  Google Scholar 

  25. Sun Q, Aslan A, Li M, Chen M. Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci China Technol Sci. 2014;57:671–9.

    ADS  CAS  Google Scholar 

  26. Sedmák P, Šittner P, Pilch J, Curfs C. Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater. 2015;94:257–70.

    ADS  Google Scholar 

  27. Yin H, He Y, Moumni Z, Sun Q. Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy. Int J Fatigue. 2016;88:166–77.

    CAS  Google Scholar 

  28. Shi X, Guo F, Zhang J, Ding H, Cui L. Grain size effect on stress hysteresis of nanocrystalline NiTi alloys. J Alloy Compd. 2016;688:62–8.

    CAS  Google Scholar 

  29. **ao Y, Zeng P, Lei L. Grain size effect on mechanical performance of nanostructured superelastic NiTi alloy. Mater Res Express. 2017;4: 035702.

    ADS  Google Scholar 

  30. Kabirifar P, Chu K, Ren F, Sun Q. Effects of grain size on compressive behavior of NiTi polycrystalline superelastic macro- and micropillars. Mater Lett. 2018;214:53–5.

    CAS  Google Scholar 

  31. Lin H, Hua P, Sun Q. Effects of grain size and partial amorphization on elastocaloric cooling performance of nanostructured NiTi. Scripta Mater. 2022;209: 117371.

    Google Scholar 

  32. Cho GB, Kim YH, Hur SG, Yu CA, Nam TH. Transformation behavior and mechanical properties of a nanostructured Ti-50.0 Ni (at.%) alloy. Metals Mater Int. 2006;12(2):181–7.

    CAS  Google Scholar 

  33. Kim YH, Cho GB, Hur SG, Jeong SS, Nam TH. Nanocrystallization of a Ti-50.0 Ni (at.%) alloy by cold working and stress/strain behavior. Mater Sci Eng A. 2006;438:531–5.

    Google Scholar 

  34. Xu B, Kang G, Yu C, Kan Q. Phase field simulation on the grain size dependent super-elasticity and shape memory effect of nanocrystalline NiTi shape memory alloys. Int J Eng Sci. 2020;156: 103373.

    MathSciNet  CAS  Google Scholar 

  35. Waitz T, Kazykhanov V, Karnthaler H. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2004;52:137–47.

    ADS  CAS  Google Scholar 

  36. Waitz T, Antretter T, Fischer FD, Karnthaler HP. Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys. Mater Sci Technol. 2008;24:934–40.

    ADS  CAS  Google Scholar 

  37. Waitz T, Tsuchiya K, Antretter T, Fischer FD. Phase transformations of nanocrystalline martensitic materials. MRS Bull. 2009;34:814–21.

    CAS  Google Scholar 

  38. Li M, Sun Q. Nanoscale phase transition behavior of shape memory alloys—closed form solution of 1D effective modelling. J Mech Phys Solids. 2018;110:21–37.

    ADS  MathSciNet  CAS  Google Scholar 

  39. Xu B, **ong J, Yu C, Wang C, Wang Q, Kang G. Improved elastocaloric effect of NiTi shape memory alloys via microstructure engineering: a phase field simulation. Int J Mech Sci. 2022;222: 107256.

    Google Scholar 

  40. Tourret D, Liu H, LLorca J. Phase-field modeling of microstructure evolution: recent applications, perspectives and challenges. Prog Mater Sci. 2022;123: 100810.

    CAS  Google Scholar 

  41. ** YM, Artemev A, Khachaturyan AG. Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of martensite in AuCd alloys. Acta Mater. 2001;49:2309–20.

    ADS  CAS  Google Scholar 

  42. Ahluwalia R, Lookman T, Saxena A. Dynamic strain loading of cubic to tetragonal martensites. Acta Mater. 2006;54:2109–20.

    ADS  CAS  Google Scholar 

  43. Idesman A, Cho J-Y, Levitas VI. Finite element modeling of dynamics of martensitic phase transitions. Appl Phys Lett. 2008;93: 043102.

    ADS  Google Scholar 

  44. Dhote RP, Melnik RVN, Zu J. Dynamic thermo−Mechanical coupling and size effects in finite shape memory alloy nanostructures. Comput Mater Sci. 2012;63:105–17.

    CAS  Google Scholar 

  45. Zhong Y, Zhu T. Phase-field modeling of martensitic microstructure in NiTi shape memory alloys. Acta Mater. 2014;75:337–47.

    ADS  CAS  Google Scholar 

  46. Paranjape HM, Manchiraju S, Anderson PM. A phase field - Finite element approach to model the interaction between phase transformations and plasticity in shape memory alloys. Int J Plast. 2016;80:1–18.

    CAS  Google Scholar 

  47. Cui S, Wan J, Rong Y, Zhang J. Phase-field simulations of thermomechanical behavior of MnNi shape memory alloys using finite element method. Comput Mater Sci. 2017;139:285–94.

    CAS  Google Scholar 

  48. **e X, Kang G, Kan Q, Yu C, Peng Q. Phase field modeling for cyclic phase transition of NiTi shape memory alloy single crystal with super-elasticity. Comput Mater Sci. 2018;143:212–24.

    CAS  Google Scholar 

  49. Sun Y, Luo J, Zhu J. Phase field study of the microstructure evolution and thermomechanical properties of polycrystalline shape memory alloys: Grain size effect and rate effect. Comput Mater Sci. 2018;145:252–62.

    CAS  Google Scholar 

  50. Sun Y, Luo J, Zhu J, Zhou K. A non-isothermal phase field study of the shape memory effect and pseudoelasticity of polycrystalline shape memory alloys. Comput Mater Sci. 2019;167:65–76.

    CAS  Google Scholar 

  51. Xu B, Kang G, Kan Q, **e X, Yu C, Peng Q. Phase field simulation to one-way shape memory effect of NiTi shape memory alloy single crystal. Comput Mater Sci. 2019;161:276–92.

    CAS  Google Scholar 

  52. Zhu J, Wang D, Gao Y, Zhang T, Wang Y. Linear-superelastic metals by con- trolled strain release via nanoscale concentration-gradient engineering. Mater Today. 2020;33:17–23.

    Google Scholar 

  53. Cissé C, Zaeem MA. Design of NiTi-based shape memory microcomposites with enhanced elastocaloric performance by a fully thermomechanical coupled phase-field model. Mater Des. 2021;207: 109898.

    Google Scholar 

  54. Ahluwalia R, Quek SS, Wu DT. Simulation of grain size effects in nanocrystalline shape memory alloys. J Appl Phys. 2015;117: 244305.

    ADS  Google Scholar 

  55. Mikula J, Quek SS, Joshi SP, Wu DT, Ahluwalia R. The role of bimodal grain size distribution in nanocrystalline shape memory alloys. Smart Mater Struct. 2018;27: 105004.

    ADS  Google Scholar 

  56. Xu B, Yu C, Kang G. Phase field study on the microscopic mechanism of grain size dependent cyclic degradation of super-elasticity and shape memory effect in nano-polycrystalline NiTi alloys. Int J Plast. 2021;145: 103075.

    CAS  Google Scholar 

  57. Cissé C, Zaeem MA. An asymmetric elasto-plastic phase-field model for shape memory effect, pseudoelasticity and thermomechanical training in polycrystalline shape memory alloys. Acta Mater. 2020;201:580–95.

    ADS  Google Scholar 

  58. Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci. 2005;50:511–678.

    CAS  Google Scholar 

  59. Yu C, Kang G, Kan Q. Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation. Int J Plast. 2014;54:132–62.

    CAS  Google Scholar 

  60. Mamivand M, Zaeem MA, El KH. Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: A phase field study. Int J Plast. 2014;60:71–86.

    CAS  Google Scholar 

  61. Cissé C, Zaeem MA. Transformation-induced fracture toughening in CuAlBe shape memory alloys: A phase-field study. Int J Mech Sci. 2021;192: 106144.

    Google Scholar 

  62. Moshkelgosha E, Mamivand M. Concurrent modeling of martensitic transformation and crack growth in polycrystalline shape memory ceramics. Eng Fract Mech. 2021;241: 107403.

    Google Scholar 

  63. Yin Q, Wu X, Huang C, Wang X, Wei Y. Atomistic study of temperature and strain rate-dependent phase transformation behaviour of NiTi shape memory alloy under uniaxial compression. Phil Mag. 2015;95:2491–512.

    ADS  CAS  Google Scholar 

  64. Qi Z, He L, Wang F, Wang J, Cheng J, **e G, Zeng X. Role of temperature and strain rate on the stress reversal in dynamic damage of monocrystalline NiTi alloy. Mech Mater. 2022;165: 104185.

    Google Scholar 

  65. Dhote RP, Gomez H, Melnik RNV, Zu J. Shape memory alloy nanostructures with coupled dynamic thermo−Mechanical effects. Comput Phys Commun. 2015;192:48–53.

    ADS  MathSciNet  CAS  Google Scholar 

  66. Soejima Y, Motomura S, Mitsuhara M, Inamura T, Nishida M. In situ scanning electron microscopy study of the thermoelastic martensitic transformation in Ti-Ni shape memory alloy. Acta Mater. 2016;103:352–60.

    ADS  CAS  Google Scholar 

  67. Ko W-S, Maisel SB, Grabowski B, Jeon JB, Neugebauer J. Atomic scale processes of phase transformations in nanocrystalline NiTi shape−Memory alloys. Acta Mater. 2017;123:90–101.

    ADS  CAS  Google Scholar 

  68. Shaw JA, Kyriakides S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 1997;45(2):683–700.

    ADS  CAS  Google Scholar 

  69. Li Z, Sun Q. The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. Int J Plast. 2002;18:1481–98.

    CAS  Google Scholar 

  70. Shariat BS, Meng Q, Mahmud AS, Wu Z, Bakhtiari R, Zhang J, Motazedian F, Yang H, Rio G, Nam T, Liu Y. Functionally graded shape memory alloys: design, fabrication and experimental evaluation. Mater Des. 2017;124:225–37.

    CAS  Google Scholar 

  71. Mahmud AS, Liu Y, Nam T. Gradient anneal of functionally graded NiTi. Smart Mater Struct. 2008;17: 015031.

    ADS  Google Scholar 

  72. Park SH, Lee JH, Nam TH, Lee YJ, Inoue K, Lee SW, Kim J. Effect of proportional control treatment on transformation behavior of Ti-50.9at.% Ni shape memory alloys. J Alloys Compd. 2013;577S:S168–74.

    Google Scholar 

  73. Huang K, Sun Q, Yu C, Yin H. Deformation behaviors of gradient nanostructured superelastic NiTi shape memory alloy. Mater Sci Eng A. 2020;786: 139389.

    CAS  Google Scholar 

  74. Chen J, **ng L, Fang G, Lei L, Liu W. Improved elastocaloric cooling performance in gradient-structured NiTi alloy processed by localized laser surface annealing. Acta Mater. 2021;208: 116741.

    CAS  Google Scholar 

  75. Chen J, Liu B, **ng L, Liu W, Lei L, Fang G. Toward tunable mechanical behavior and enhanced elastocaloric effect in NiTi alloy by gradient structure. Acta Mater. 2022;226: 117609.

    CAS  Google Scholar 

  76. Kong X, Yang Y, Guo S, Li R, Feng B, Jiang D, Li M, Chen C, Cui L, Hao S. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning. J Mater Sci Technol. 2021;71:163–8.

    CAS  Google Scholar 

  77. Shariat BS, Liu Y, Meng Q, Rio G. Analytical modelling of functionally graded NiTi shape memory alloy plates under tensile loading and recovery of deformation upon heating. Acta Mater. 2013;61:3411–21.

    ADS  CAS  Google Scholar 

  78. Meng Q, Wu Z, Bakhtiari R, Shariat BS, Yang H, Liu Y, Nam T. A unique “fishtail-like” four-way shape memory effect of compositionally graded NiTi. Scripta Mater. 2017;127:84–7.

    CAS  Google Scholar 

  79. Xu B, Wang C, Wang Q, Yu C, Kan Q, Kang G. Enhancing elastocaloric effect of NiTi alloy by concentration-gradient engineering. Int J Mech Sci. 2023;246: 108140.

    Google Scholar 

  80. Shariat BS, Liu Y, Rio G. Hystoelastic deformation behaviour of geometrically graded NiTi shape memory alloys. Mater Des. 2013;50:879–85.

    CAS  Google Scholar 

  81. Shariat BS, Liu Y, Rio G. Modelling and experimental investigation of geometrically graded NiTi shape memory alloys. Smart Mater Struct. 2013;22: 025030.

    ADS  CAS  Google Scholar 

  82. Shariat BS, Liu Y, Bakhtiari S. Modelling and experimental investigation of geometrically graded shape memory alloys with parallel design configuration. J Alloy Compd. 2019;791:711–21.

    CAS  Google Scholar 

  83. Shariat BS, Bakhtiari R, Liu Y. Nonuniform transformation behaviour of NiTi in a discrete geometrical gradient design. J Alloy Compd. 2019;774:1260–6.

    CAS  Google Scholar 

  84. Shariat BS, Bakhtiari S, Yang H, Liu Y. Controlled initiation and propagation of stress-induced martensitic transformation in functionally graded NiTi. J Alloy Compd. 2021;851: 156103.

    CAS  Google Scholar 

  85. Xu B, Kang G. Phase field simulation on the super-elasticity, elastocaloric and shape memory effect of geometrically graded nano-polycrystalline NiTi shape memory alloys. Int J Mech Sci. 2021;201: 106462.

    Google Scholar 

  86. He Y, Sun Q. Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates. Int J Mech Sci. 2010;52:198–211.

    Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (12202294 and 12022208), the Project funded by China Postdoctoral Science Foundation (2022M712243), and the Fundamental Research Funds for the Central Universities (2023SCU12098) are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

BX was involved in conceptualization, formal analysis, funding acquisition, methodology, software, and writing—original draft. BH assisted with methodology and software. CW was responsible for conceptualization, supervision, and writing—reviewing and editing. QW contributed to funding acquisition and validation.

Corresponding authors

Correspondence to Chong Wang or Qingyuan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1261 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Huang, B., Wang, C. et al. Effect of Texture on the Grain-Size-Dependent Functional Properties of NiTi Shape Memory Alloys and Texture Gradient Design: A Phase Field Study. Acta Mech. Solida Sin. 37, 10–32 (2024). https://doi.org/10.1007/s10338-023-00439-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00439-3

Keywords

Navigation