Log in

Differences in transcription regulation of diurnal metabolic support to physiologically contrasting seasonal life-history states in migratory songbirds

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We hypothesized that there were diurnal differences in metabolism, with major transcriptional changes occurring early during the day and/or night between migratory and non-migratory states of avian migrants. Present study investigated this in captive Black-headed Buntings (Emberiza melanocephala) exhibiting long-day stimulated vernal migratory and post-breeding non-migratory states, by using RNA-Seq and qPCR assays of liver samples collected at 1 h into day (hour 1) and 1 h into night (hour 17) of the 16-h photoperiod (16L:8D). There were differentially expressed genes (DEGs) both within (day vs. night) and between (vernal migratory vs. non-migratory) states. Within the state, 358 and 52 DEGs were identified in migratory and non-migratory states, respectively. In the migratory state, genes associated with oxidative phosphorylation (sdh) had higher expression, and genes associated with fat metabolism (acaca and elovl6) and ABC transporters (abcg5, abcg8) had lower expression at night, compared to the daytime. In the non-migratory state, among genes associated with fat metabolism and gluconeogenesis, ppara and hmgcl had higher while aacs had lower expression at night. Between states, 35 and 180 DEGs were identified in day and night, respectively, with highly expressed genes associated with fat metabolism (acsbg2, cetp) found in migratory, and those associated with cell death (casp7), gluconeogenesis (stat3) and circadian rhythm pathway (cry1) in the non-migratory state. These results demonstrate differentially activated hepatic molecular pathways during photostimulated vernal migratory and post-breeding non-migratory states of buntings and provide molecular insights into differential metabolic support to physiologically contrasting seasonal life-history states in migratory songbirds.

Zusammenfassung

Unterschiede in der Transkriptionsregulierung im Tagesgang des Stoffwechsels innerhalb der physiologisch und jahreszeitlich bedingten Lebensphasen ziehender Singvögel

Wir stellten die Hypothese auf, dass es zwischen Zugvögeln und Standvögeln tageszeitliche Stoffwechsel-Unterschiede gibt, bei denen größere Transkriptionsveränderungen früh am Tag und/oder in der Nacht auftreten. In der vorliegenden Studie wurde dies bei in Gefangenschaft gehaltenen Kappenammern (Emberiza melanocephala) in durch Langtage stimulierter Frühjahrszug-Aktivität und in der zugfreien Zeit nach dem Brüten untersucht. Dazu wurden RNA-Seq- und qPCR-Tests an Leberproben durchgeführt, die um 1 Uhr am Tag (Stunde 1) und um 1 Uhr in der Nacht (Stunde 17) während einer 16-stündigen Photoperiode (16L:8D) entnommen wurden. Es gab unterschiedlich exprimierte Gene (DEGs) sowohl innerhalb (Tag vs. Nacht) als auch zwischen einzelnen Phasen (Frühjahrszug vs. stationär). Innerhalb der jeweiligen Phase wurden 358 DEGs bei Ziehenden und 52 DEGs bei Nicht-Ziehenden identifiziert. Während des Ziehens hatten mit der oxidativen Phosphorylierung (sdh) verbundene Gene eine höhere Expression; Gene, die mit dem Fettstoffwechsel (acaca und elovl6) und den ABC-Transportern (abcg5, abcg8) zusammenhängen, zeigten nachts eine geringere Expression als am Tag. Außerhalb der Zugzeit hatten von denjenigen Genen, die mit dem Fettstoffwechsel und der Gluconeogenese in Verbindung stehen, ppara und hmgcl nachts eine höhere, aacs eine niedrigere Expression. Zwischen den jeweiligen Phasen wurden am Tag 35 und in der Nacht 180 DEGs identifiziert, wobei während des Ziehens hoch exprimierte Gene im Zusammenhang mit dem Fettstoffwechsel (acsbg2, cetp) gefunden wurden und zwischen den Zugzeiten solche, die mit dem Zelltod (casp7), der Gluconeogenese (stat3) und dem circadianen Rhythmus (cry1) in Verbindung stehen. Diese Ergebnisse zeigen, dass bei Ammern die molekularen Stoffwechselwege in der Leber während des photoperiodisch stimulierten Frühjahrszuges und in der Zeit nach dem Brüten unterschiedlich aktiviert werden. Sie geben ferner molekulare Einblicke in die unterschiedliche Stoffwechselunterstützung in den physiologisch unterschiedlichen, jahreszeitlich bedingten Lebensphasen ziehender Singvögel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The RNA-Seq data are accessible from the NCBI Gene Expression Omnibus repository (#GSE104748). The Genbank accession numbers to access the gene sequences are given in Table S2.

Code availability

Not applicable.

Abbreviations

aacs :

Acetoacetyl-coA synthetase

acaca :

Acetyl-coA carboxylase 1

acot7 :

Acyl-coenzyme A thioesterase 7

acsbg2 :

Acyl-coA synthetase bubblegum family member 2

casp7 :

Caspase-7

cetp :

Cholesteryl ester transfer protein

cry1 :

Cryptochrome 1

cs :

Citrate synthase

elovl6 :

Elongation of long-chain fatty acids family member 6

gpx4 :

Glutathione peroxidase 4

hmgcl :

3-Hydroxy-3-methyl-glutaryl CoA lyase

nM:

Photorefractory (post-breeding) non-migratory state

pck1 :

Phosphoenolpyruvate carboxykinase 1

ppara :

Peroxisome proliferator-activated receptor alpha

sdh :

Succinate dehydrogenase

stat3 :

Signal transducer and activator of transcription 3

tmem :

Transmembrane protein

vM:

Photostimulated vernal (spring) migratory state

References

  • Ali S, Ripley SD (1974) Handbooks of the birds of India and Pakistan, vol 10. Oxford University Press, New York

    Google Scholar 

  • Bairlein F, Fritz J, Scope A, Schwendenwein I, Stanclova G, van Dijk G, Meijer HAJ, Verhulst S, Dittami J (2015) Energy expenditure and metabolic changes of free-flying migrating Northern bald Ibis. PLoS ONE 10:e0134433

    Article  PubMed  PubMed Central  Google Scholar 

  • Biebach H, Bauchinger U (2003) Energetic savings by organ adjustment in Garden Warblers (Sylvia borin). In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 269–280

    Chapter  Google Scholar 

  • Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Regulators of iron homeostasis: new players in metabolism. Cell Death Dis 41:274–286

    CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Cabrero DG, Cervera A, McPherson A, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Contina A, Bridge ES, Kelly JF (2016) Exploring novel candidate genes from the mouse genome informatics database: potential implications for avian migration research. Integr Zool 11:240–249

    Article  PubMed  Google Scholar 

  • Fudickar AM, Peterson MP, Greives TJ, Atwell JW, Bridge ES, Ketterson ED (2016) Differential gene expression in seasonal sympatry: mechanisms involved in diverging life histories. Biol Lett 212:20160069

    Article  Google Scholar 

  • Goymann W, Lupi S, Kaiya H, Cardinale M, Fusani L (2017) Ghrelin affects stopover decisions and food intake in long distance migrant. Proc Natl Acad Sci USA 114:1946–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guglielmo CG (2018) Obese super athletes: fat fuelled migration in birds and bats. J Exp Biol 221:165753

    Article  Google Scholar 

  • Gwinner E, Czeslik D (1978) On the significance of spring migratory restlessness in caged birds. Oikos 30:364–372

    Article  Google Scholar 

  • Hamaya Y, Takeda T, Dohi S, Nakashima S, Nozawa Y (2000) The effects of pentobarbital, isoflurane, and propofol on immediate-early gene expression in the vital organs of the rat. Anesth Analg 90:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puigserver P (2018) Insulin regulation of gluconeogenesis. Ann NY Acad Sci 1411:21–35

    Article  CAS  PubMed  Google Scholar 

  • Horton WJ, Jensen M, Sebastian A, Praul CA, Albert I, Bartell PA (2019) Transcriptome analyses of heart and liver reveal novel pathways for regulating songbird migration. Sci Rep 9:6058

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Ogawa W, Ozaki M, Haga S, Matsumoto M, Furukawa K, Hashimoto N, Kido Y, Mori T, Sakaue H et al (2004) Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med 10:168–174

    Article  CAS  PubMed  Google Scholar 

  • Jenni-Eiermann S, Jenni L, Kvist A, Lindström A, Piersma T, Visser GH (2002) Fuel use and metabolic response to endurance exercise: a wind tunnel study of a long-distance migrant shorebird. J Exp Biol 205:2453–2460

    Article  PubMed  Google Scholar 

  • John TM, George JC (1967) Seasonal variation in cholesterol level in the migratory starling (Starnus roseus). Pavo 5:29–38

    Google Scholar 

  • Johnston RA, Paxton KL, Moore FR, Wayne RK, Smith TB (2016) Seasonal gene expression in a migratory songbird. Mol Ecol 25:5680–5691

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Wingfield JC, Dawson A, Ramenofsky M, Rani S, Bartell P (2010) Biological clocks and regulation of seasonal reproduction and migration in birds. Physiol Biochem Zool 83:827–835

    Article  PubMed  Google Scholar 

  • Kurauti MA, Freitas-Dias R, Ferreira SM, Vettorazzi JF, Nardelli TR, Araujo HN, Santos GJ, Carneiro EM, Boschero AC, Rezende LF et al (2016) Acute exercise improves insulin clearance and increased the expression of insulin-degrading enzyme in the liver and skeletal muscle of swiss mice. PLoS ONE 11:e0160239

    Article  PubMed  PubMed Central  Google Scholar 

  • Landys MM, Piersma T, Guglielmo CG, Jukema J, Ramenofsky M, Wingfield JC (2005) Metabolic profile of long-distance migratory flight and stopover in a shorebird. Proc Royal Soc Biol Sci 272:295–302

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Singh S, Rani S, Kumar V (2014) Life at a different pace: annual itineraries are conserved in seasonal songbirds. J Biosci 39:485–491

    Article  CAS  PubMed  Google Scholar 

  • Markert MJ, Zhang Y, Enuameh MS, Reppertet SM, Wolfe SA, Merlin C (2016) Genomic access to monarch migration using TALEN and CRISPR/Cas9-Mediated targeted mutagenesis. G3 Genes/genomes/genetics 6:905–915

    Article  CAS  Google Scholar 

  • Merlin C, Liedvogel M (2019) The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. J Exp Biol 222:191890

    Article  Google Scholar 

  • Misra M, Rani S, Singh S, Kumar V (2004) Regulation of seasonality in the migratory male blackheaded bunting (Emberiza melanocephala). Reprod Nutr Dev 44:341–352

    Article  PubMed  Google Scholar 

  • Moore MC, Donham RS, Farner DS (1982) Physiological preparation for autumnal migration in White-crowned sparrow. Condor 84:410–419

    Article  Google Scholar 

  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protocol 11:1650–1667

    Article  CAS  Google Scholar 

  • Price ER, Bauchinger U, Zajac DM, Cerasale DJ, McFarlan JT, Gerson AR, McWilliams SR, Guglielmo CG (2011) Migration and exercise induced changes to flight uscle size in migratory birds and association with IGF1 and myostatin mRNA expression. J Exp Biol 214:2823–2831

    Article  CAS  PubMed  Google Scholar 

  • Ramenofsky M, Wingfield JC (2007) Regulation of migration. Bioscience 57:135–143

    Article  Google Scholar 

  • Rani S, Malik S, Trivedi AK, Singh S, Kumar V (2006) A circadian clock regulates migratory restlessness in the blackheaded bunting (Emberiza melanocephala). Curr Sci 91:1093–1095

    Google Scholar 

  • Rastogi A, Kumari Y, Rani S, Kumar V (2011) Phase inversion of neural activity in the olfactory and visual systems of a night-migratory bird during migration. Eur J Neurosci 34:99–109

    Article  PubMed  Google Scholar 

  • Rastogi A, Kumari Y, Rani S, Kumar V (2013) Neural correlates of migration: activation of putative hypothalamic clock(s) in and out of migratory state in the night-migratory blackheaded bunting (Emberiza melanocephala). PLoS ONE 8:e70065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kumar V (2019) Metabolic plasticity mediates differential responses to spring and autumn migrations: evidence from gene expression patterns in migratory buntings. Exp Physiol 104:1841–1857

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Singh D, Das S, Kumar V (2018a) Hypothalamic and liver transcriptome from two crucial life history stages in a migratory songbird. Exp Physiol 103:559–569

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Singh D, Malik S, Gupta NJ, Rani S, Kumar V (2018b) Difference in control between spring and autumn migration in birds: insight from seasonal changes in hypothalamic gene expression in captive buntings. Proc Royal Soc Biol Sci 285:20181531

    Google Scholar 

  • Singh D, Trivedi AK, Rani S, Panda S, Kumar V (2015) Circadian timing in central and peripheral tissues in a migratory songbird: dependence on annual life-history states. FASEB J 29:4248–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Swarup V, Le H, Kumar V (2018) Transcriptional signatures in liver reveal metabolic adaptations to seasons in migratory blackheaded buntings. Front Physiol 9:1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Staib-Lasarzik I, Kriego O, Timaru-Kast R, Pieter D, Werner C, Engelhard K, Thal SC (2014) Anesthesia for euthanasia influences mRNA expression in healthy mice and after traumatic brain injury. J Neurotrauma 31:1664–1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Subhash S, Kanduri C (2016) GeneSCF: a real-time based functional enrichment tool with support for multiple organisms. BMC Bioinform 17:365

    Article  Google Scholar 

  • Totzke U, Hȕbinger A, Dittami J, Bairlein F (2000) The autumn fattening of the long-distance migratory garden warbler (Sylvia borin) is simulated by intermittent fasting. J Comp Physiol B 170:627–631

    Article  CAS  PubMed  Google Scholar 

  • Trefts E, Williams AS, Wasserman DH (2015) Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci 135:203–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi AK, Kumar J, Rani S, Kumar V (2014) Annual life history dependent gene expression in the hypothalamus and liver of a migratory songbird: Insights into the molecular regulation of seasonal metabolism. J Biol Rhythms 29:332–345

    Article  CAS  PubMed  Google Scholar 

  • Trivedi AK, Malik S, Rani S, Kumar V (2015) Adaptation of oxidative phosphorylation to photoperiod-induced seasonal metabolic states in migratory songbirds. Comp Biochem Physiol A Comp Physiol 184:34–40

    Article  CAS  Google Scholar 

  • Yang WS, Ramaratnam RS, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Hammer RE, Li-Hawkins J, Bergmann K, Lutjohann D, Cohen JC, Hobbs HH (2002) Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 99:16237–16242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Department of Biotechnology [BT/PR4984/MED/30/752/2012], New Delhi, to VK; AS received a CSIR fellowship.

Author information

Authors and Affiliations

Authors

Contributions

VK: conceived the idea; DS and SR: experiment—monitoring of activity behaviour and collecting liver samples; AS and SD: transcriptome analysis; AS: qPCR assays; AS and VK: Analyses and preparation of figures; VK and AS: Wrote the paper. VK: Resources including funding.

Corresponding author

Correspondence to Vinod Kumar.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Ethical approval

This study was performed as per approval of the Institutional Animal Ethics Committee experiment of the Department of Zoology, University of Lucknow, Lucknow, India (LU/ZOOL/IRPHA/Protocol2.3/NOV07).

Consent to participate

NA.

Consent for publication

All authors gave final approval for publication and agree to be held accountable for the work performed.

Additional information

Communicated by I. Moore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Das, S., Singh, D. et al. Differences in transcription regulation of diurnal metabolic support to physiologically contrasting seasonal life-history states in migratory songbirds. J Ornithol 163, 199–212 (2022). https://doi.org/10.1007/s10336-021-01926-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-021-01926-5

Keywords

Navigation