Log in

Oxidative stress induces high transcription of Rhm52 and Rhm54, novel genes identified as being involved in recombinational repair in Magnaporthe grisea

  • FUNGAL DISEASES
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

The first two recombinational repair genes of Magnaporthe grisea were cloned. Analysis of the deduced amino acid sequences revealed that Rhm52 and Rhm54 are Saccharomyces cerevisiae RAD52 and RAD54 homologs, respectively. Phenotypic complementation testing of these genes showed their function in recombinational repair. Both genes were in single copies in M. grisea genome. Expression of these genes was induced by methyl methanesulfonate and ultraviolet radiation as known for other homologs of the RAD52 epistasis group. Higher induction of both genes by oxidative stress and heat shock indicated the probability for recombinational repair during the infection cycle of M. grisea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A Aguilera S Chavez F Malagón (2000) ArticleTitleMitotic recombination in yeast: elements controlling its incidence Yeast 16 731–754 Occurrence Handle10.1002/1097-0061(20000615)16:8<731::AID-YEA586>3.0.CO;2-L Occurrence Handle1:CAS:528:DC%2BD3cXktl2it7w%3D Occurrence Handle10861900

    Article  CAS  PubMed  Google Scholar 

  • AJR Bishop RH Schiestl (2000) ArticleTitleHomologous recombination as a mechanism for genome rearrangements: environmental and genetic effects Human Mol Genet 9 2427–2434 Occurrence Handle1:CAS:528:DC%2BD3cXnslGqsL8%3D

    CAS  Google Scholar 

  • U Bonas RE Stall B Staskawicz (1988) ArticleTitleGenetics and structural characterization of the avirulence gene avr3 from Xanthomonas campestris pv. vesicatoria Mol Gen Genet 218 127–136

    Google Scholar 

  • RJ Brennan BE Swoboda RH Scheistl (1994) ArticleTitleOxidative mutagens induce intrachromosomal recombination in yeast Mutat Res 308 159–167 Occurrence Handle1:CAS:528:DyaK2cXlt1KrsLo%3D Occurrence Handle7518043

    CAS  PubMed  Google Scholar 

  • D Carro E Bartra B Piña (2003) ArticleTitleKaryotype rearrangements in a wine yeast strain by rad52-dependent and rad52-independent mechanisms Appl Environ Microbiol 69 2161–2165 Occurrence Handle10.1128/AEM.69.4.2161-2165.2003 Occurrence Handle1:CAS:528:DC%2BD3s**vFKqs7k%3D Occurrence Handle12676696

    Article  CAS  PubMed  Google Scholar 

  • MJ Daboussi P Capy (2003) ArticleTitleTransposable elements in filamentous fungi Annu Rev Microbiol 57 275–299 Occurrence Handle10.1146/annurev.micro.57.030502.091029 Occurrence Handle1:CAS:528:DC%2BD3sXptFWmu7k%3D Occurrence Handle14527280

    Article  CAS  PubMed  Google Scholar 

  • JF Davidson RH Schiestl (2001) ArticleTitleCytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae J Bacteriol 183 4580–4597 Occurrence Handle10.1128/JB.183.15.4580-4587.2001 Occurrence Handle1:CAS:528:DC%2BD3MXlsVens7k%3D Occurrence Handle11443093

    Article  CAS  PubMed  Google Scholar 

  • JM Davière T Langin MJ Daboussi (2001) ArticleTitlePotential role of transposable elements in the rapid reorganization of the Fusarium oxysporum genome Fungal Genet Biol 34 177–192 Occurrence Handle10.1006/fgbi.2001.1296 Occurrence Handle11728156

    Article  PubMed  Google Scholar 

  • RA Dean NJ Talbot DJ Ebbole ML Farman TK Mitchell MJ Orbach M Thon R Kulkarni JR Xu H Pan ND Read YH Lee I Carbone D Brown YY Oh N Donofrio JS Jeong DM Soanes S Djonovic E Kolomiets C Rehmeyer W Li M Harding S Kim MH Lebrun H Bohnert S Coughlan J Butler S Calvo LJ Ma R Nicol S Purcell C Nusbaum JE Galagan BW Birren (2005) ArticleTitleThe genome sequence of the rice blast fungus Magnaporthe grisea Nature 434 980–986 Occurrence Handle10.1038/nature03449 Occurrence Handle1:CAS:528:DC%2BD2MXjsVequ74%3D Occurrence Handle15846337

    Article  CAS  PubMed  Google Scholar 

  • A Dudas M Chovanec (2004) ArticleTitleDNA double-strand break repair by homologous recombination Mutat Res 566 131–167 Occurrence Handle1:CAS:528:DC%2BD2cXhtFWmurg%3D Occurrence Handle15164978

    CAS  PubMed  Google Scholar 

  • Egan M, Talbot N (2005) Determining the role of reactive oxygen species generation in Magnaporthe grisea. Fungal Genet Newsl 52 (Suppl) 116

    Google Scholar 

  • ML Farman Y Eto T Nakao Y Tosa H Nakayashiki S Mayama SA Leong (2002) ArticleTitleAnalysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea Mol Plant Microbe Interact 15 6–16 Occurrence Handle1:CAS:528:DC%2BD38XktlGitQ%3D%3D Occurrence Handle11843304

    CAS  PubMed  Google Scholar 

  • HH Flor (1971) ArticleTitleCurrent status of the gene-for-gene concept Annu Rev Phytopathol 9 275–296 Occurrence Handle10.1146/annurev.py.09.090171.001423

    Article  Google Scholar 

  • N Handa Y Noguchi Y Sakuraba P Ballario G Macino N Fujimoto C Ishii H Inoue (2000) ArticleTitleCharacterization of the Neurospora crassa mus-25 mutant: the gene encodes a protein which is homologous to the Saccharomyces cerevisiae RAD54 protein Mol Gen Genet 264 154–163 Occurrence Handle1:CAS:528:DC%2BD3cXntVaqtb4%3D Occurrence Handle11016845

    CAS  PubMed  Google Scholar 

  • K Ikeda H Nakayashiki M Takagi Y Tosa S Mayama (2001) ArticleTitleHeat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea Mol Genet Genom 266 318–325 Occurrence Handle1:CAS:528:DC%2BD3MXptVehs74%3D

    CAS  Google Scholar 

  • S Kang MH Lebrun L Farral B Valent (2001) ArticleTitleGain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene Mol Plant Microbe Interact 145 671–674

    Google Scholar 

  • LJ Karanjawala N Murphy DR Hinton CL Hsieh MR Leiber (2002) ArticleTitleOxygen metabolism causes chromosome breaks and is associated with neuronal apoptosis observed in DNA double-strand break repair mutants Curr Biol 12 397–402 Occurrence Handle10.1016/S0960-9822(02)00684-X Occurrence Handle1:CAS:528:DC%2BD38XhvVCnsL4%3D Occurrence Handle11882291

    Article  CAS  PubMed  Google Scholar 

  • H Kito Y Takahashi J Sato S Fukiya T Sone F Tomita (2003) ArticleTitleOccan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates Curr Genet 42 322–331 Occurrence Handle10.1007/s00294-002-0365-0 Occurrence Handle1:CAS:528:DC%2BD3sXhsFKqu70%3D Occurrence Handle12612805

    Article  CAS  PubMed  Google Scholar 

  • JE Leach FF White ML Rhoads H Leung (1990) ArticleTitleA repetitive DNA sequence differentiates Xanthomonas campestris pv oryzae from other pathovars of Xanthomonas campestris Mol Plant Microbe Interact 3 238–246 Occurrence Handle1:CAS:528:DyaK3MXlsFajt78%3D

    CAS  Google Scholar 

  • S Martinez J Martinez-Salazar A Camas R Sanchez G Soberon-Chavez (1997) ArticleTitleEvaluation of the role of RecA protein in plant virulence with recA mutants of Xanthomonas campestris pv campestris Mol Plant Microbe Interact 10 911–916 Occurrence Handle1:CAS:528:DyaK2sXmt1WrsrY%3D Occurrence Handle9304862

    CAS  PubMed  Google Scholar 

  • PL Newman H Owen (1985) ArticleTitleEvidence of a sexual recombination in Rhynchosporium secalis Plant Pathol 34 338–340

    Google Scholar 

  • LD Rockwood K Felix S Janz (2004) ArticleTitleElevated presence of retrotransposons at sites of DNA double strand break repair in mouse models of metabolic oxidative stress and MYC-induced lymphoma Mutat Res 548 117–125 Occurrence Handle1:CAS:528:DC%2BD2c**vVWks7g%3D Occurrence Handle15063142

    CAS  PubMed  Google Scholar 

  • Y Sakuraba AL Schroeder C Ishii H Inoue (2000) ArticleTitleA Neurospora double strand break repair gene, mus-11, encodes a RAD52 homologue and is inducible by mutagens Mol Gen Genet 264 392–401 Occurrence Handle1:CAS:528:DC%2BD3MXhtFWksw%3D%3D Occurrence Handle11129042

    CAS  PubMed  Google Scholar 

  • T Sone T Abe M Suto F Tomita (1997) ArticleTitleIdentification and characterization of a karyotypic mutation in Magnaporthe grisea Biosci Biotech Biochem 61 81–86 Occurrence Handle1:CAS:528:DyaK2sXhtVSjsLc%3D

    CAS  Google Scholar 

  • T Sone A Oguchi H Kikuchi A Senoh S Nakagawa F Tomita (2005) ArticleTitleThree novel retrotransposons from Magnaporthe grisea mini-chromosome Fungal Genet Newsl 52 IssueIDSuppl 141

    Google Scholar 

  • LS Symington (2002) ArticleTitleRole of RAD52 epistasis group genes in homologous recombination and double strand break repair Microbiol Mol Biol Rev 66 630–670 Occurrence Handle1:CAS:528:DC%2BD38XpslemtL0%3D Occurrence Handle12456786

    CAS  PubMed  Google Scholar 

  • HAS Teunissen J Verkooijen BJC Cornelissen MA Haring (2002) ArticleTitleGenetic exchange of avirulence determinants and extensive karyotype rearrangements in parasexual recombinants of Fusarium oxysporum Mol Genet Genom 268 298–310 Occurrence Handle1:CAS:528:DC%2BD38XoslSlsLg%3D

    CAS  Google Scholar 

  • SJ Vollmer C Yanofsky (1986) ArticleTitleEfficient cloning of genes of Neurospora crassa Proc Natl Acad Sci USA 83 4869–4873 Occurrence Handle1:CAS:528:DyaL28XkvFansLY%3D

    CAS  Google Scholar 

  • RS Zeigler RP Scott H Leung A Bordeos J Kumar RJ Nelson (1997) ArticleTitleEvidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality Phytopathology 87 284–294 Occurrence Handle1:CAS:528:DyaK2sXktV2lu74%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Sone.

Additional information

The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB091332 and AB091330

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elegado, E., Iwasaki, A., Sales, M. et al. Oxidative stress induces high transcription of Rhm52 and Rhm54, novel genes identified as being involved in recombinational repair in Magnaporthe grisea. J Gen Plant Pathol 72, 16–19 (2006). https://doi.org/10.1007/s10327-005-0238-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-005-0238-8

Key words

Navigation