Log in

Changes in soil microbial community and activity in warm temperate forests invaded by moso bamboo (Phyllostachys pubescens)

  • Original Article
  • Published:
Journal of Forest Research

Abstract

In the past few decades, moso bamboo (Phyllostachys pubescens) forests in Japan have rapidly expanded, and moso bamboo is now invading nearby native forests. In this study, we assessed the effects of moso bamboo invasion on the soil microbial community and activity in warm temperate forests in western Japan. We sampled soil, measured soil microbial respiration, and used phospholipid fatty acid (PLFA) analysis to examine changes in microbial community composition. We found that the invasion of bamboo into the native secondary forest of Japan can cause changes to some soil properties. We also observed a significant difference in soil microbial community composition between the bamboo and native forests. The ratio of bacterial PLFA to fungal PLFA was significantly higher after bamboo invasion, while bacterial PLFA contents were significantly lower in the organic layer. Soil microbial respiration rates significantly decreased in the organic layer, and significantly increased in the mineral layer. Microbial respiration activity, as indicated by soil microbial respiration rates per total PLFA content, decreased in the organic layer but increased in the mineral layer after bamboo invasion. These results indicate that bamboo invasion significantly affects associated soil microbial communities and decomposition patterns of soil organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arao T, Okano S, Nishio T (2001) Comparison of bacterial and fungal biomass determined by phospholipid fatty acid and direct microscopical analysis in 4 types of upland soils. Soil Microorg 55:29–36

    Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:2805–2814

    Article  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasion 8:217–230

    Article  Google Scholar 

  • Bekku Y, Koizumi H, Oikawa T, Iwaki H (1997) Examination of four methods for measuring soil respiration. Appl Soil Ecol 5(3):247–254

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Chang EH, Chiu CY (2015) Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo. Appl Soil Ecol 91:1–7

    Article  Google Scholar 

  • Chornesky EA, Bartuska AM, Aplet GH, Britton KO, Cummings-Carlson J, Davis FW, Eskow J, Gordon DR, Gottschalk KW, Haack RA, Hansen AJ, Mack RN, Rahel FJ, Shannon MA, Wainger LA, Wigley TB (2005) Science priorities for reducing the threat of invasive species to sustainable forestry. Bioscience 55:335–348

    Article  Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  CAS  PubMed  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Frostegård A, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Fukushima K, Usui N, Ogawa R, Tokuchi N (2015) Impacts of moso bamboo (Phyllostachys pubescens) invasion on dry matter and carbon and nitrogen stocks in a broad-leaved secondary forest located in Kyoto, western Japan. Plant Species Biol 30:81–95

    Article  Google Scholar 

  • Isagi Y, Torii A (1998) Range expansion and its mechanisms in a naturalized bamboo species, Phyllostachys pubescens, in Japan. J Sustain For 6:127–141

    Article  Google Scholar 

  • Ishiga H, Dozen K, Kodera Y, Haito K (2001) Effects of bamboo invasion on the soil of broadleaf forests and their potential environmental impact. Geosci Rep Shimane Univ 20:83–86 (in Japanese with English summary)

    CAS  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Kobayashi T, Tada M (2010) How do moso bamboo forests change carbon sequestration and storage, and decomposition of soil organic matter in community forests? Shinrin Kagaku 53:6–10 (in Japanese)

    Google Scholar 

  • Kourtev PS, Ehrenfelda JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166

    Article  Google Scholar 

  • Kourtev PS, Ehrenfelda JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905

    Article  CAS  Google Scholar 

  • Li WH, Zhang CB, Jiang HB, **n GR, Yang ZY (2006) Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281:309–324

    Article  CAS  Google Scholar 

  • Myers RT, Zak DR, White DC, Peacock A (2001) Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci Soc Am J 65:359–367

    Article  CAS  Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed May 2015

  • Shibata S (2010) Bamboo forest management for efficient use of bamboo materials. Shinrin Kagaku 53:15–19 (in Japanese)

    Google Scholar 

  • Shinohara Y, Kyoichi O (2015) Comparisons of soil water content between a moso bamboo (Phyllostachys pubescens) forest and an evergreen broadleaved forest in western Japan. Plant Species Biol 30:96–103

    Article  Google Scholar 

  • Stoffel W, Chu F, Ahrens EH (1959) Analysis of long-chain fatty acids by gas–liquid chromatography. Micromethod for preparation of methyl esters. Anal Chem 31:307–308

    Article  CAS  Google Scholar 

  • Tang X, Fan S, Qi L, Guan F, Cai C, Du M (2015) Soil respiration and carbon balance in a moso bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) forest in subtropical China. iForest 8:606–614

  • Torii A (2003) Bamboo forests as invaders of surrounding secondary forests. J Jpn Soc Reveg Technol 28:412–416 (in Japanese)

    Article  Google Scholar 

  • Ueda K (1960) Studies on the physiology of bamboo, with reference to practical application. Resource bureau ref. data 34. Resource Bureau Science and Technics Agency, Prime Minister’s Office, Tokyo

  • Wang X, Ren H (2008) Comparative study of the photo-discoloration of moso bamboo (Phyllostachys pubescens Mazel) and two wood species. Appl Surf Sci 254:7029–7034

    Article  CAS  Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. BioScience 48(8):607–615

    Article  Google Scholar 

  • Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487

    Article  Google Scholar 

  • Xu QF, Jiang PK, Wu JS, Zhou GM, Shen RF, Fuhrmann JJ (2015) Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity. Biol Invasions 17:433–444

    Article  Google Scholar 

  • Xue D, Yao HY, Ge DY, Huang CY (2008) Soil microbial community structure in diverse land use systems: a comparative study using Biolog, DGGE, and PLFA analyses. Pedosphere 18:653–663

    Article  CAS  Google Scholar 

  • Yoshitake S, Nakatsubo T (2008) Changes in soil microbial biomass and community composition along vegetation zonation in a coastal sand dune. Aust J Soil Res 47:390–396

    Article  Google Scholar 

  • Yoshitake S, Uchida M, Nakatsubo T, Kanda H (2006) Characterization of soil microflora on a successional glacier foreland in the High Arctic on Ellesmere Island, Nunavut, Canada using phospholipid fatty acid analysis. Polar Biosci 19:73–84

    Google Scholar 

  • Zhang N, Liu W, Yang H, Yu X, Gutknecht JLM, Zhang Z, Wan S, Ma K (2013) Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. Oecologia 173:1125–1142

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mori, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University for the measurements of total C and N contents. We also thank Dr. Shinpei Yoshitake of the Takayama Field Station, Gifu University, Japan, for his technical support and helpful comments. We are grateful to Prof. Hirofumi Wakaki and Associate Prof. Hirokazu Yanagihara of the Statistical Science Research Core, and Dr. Masae Ishihara of the Graduate School for International Development and Cooperation, Hiroshima University, for their helpful comments on our statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **n Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Sasaki, A., Toda, M. et al. Changes in soil microbial community and activity in warm temperate forests invaded by moso bamboo (Phyllostachys pubescens). J For Res 21, 235–243 (2016). https://doi.org/10.1007/s10310-016-0533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10310-016-0533-6

Keywords

Navigation