Log in

Antifouling potentials of eight deep-sea-derived fungi from the South China Sea

  • Natural Products
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701–009, Micrococcus luteus UST950701–006 and Pseudoalteromonas piscida UST010620–005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acar JF (1980) The disc susceptibility test. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams & Wilkins, Baltimore, pp 24–54

    Google Scholar 

  2. Bao J, Sun YL, Zhang XY, Han Z, Gao HC, He F, Qian PY, Qi SH (2013) Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillus sp. SCSGAF 0023. J Antibiot 66:219–223. doi:10.1038/ja.2012.110

    Article  CAS  PubMed  Google Scholar 

  3. Bao J, Zhang XY, Xu XY, He F, Nong XH, Qi SH (2013) New cyclic tetrapeptides and asteltoxins from gorgonian-derived fungus Aspergillus sp. SCSGAF 0076. Tetrahedron 69:2113–2117. doi:10.1016/j.tet.2013.01.021

    Article  CAS  Google Scholar 

  4. Birch AJ, Russell RA (1972) Studies in relation to biosynthesis-XLIV: structural elucidations of brevianamides-B, -C, -D and -F. Tetrahedron 28:2999–3008. doi:10.1016/0040-4020(72)80014-0

    Article  CAS  Google Scholar 

  5. Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem Bio Chem 3:619–627. doi:10.1002/1439-7633

    Article  CAS  PubMed  Google Scholar 

  6. Bryan PJ, Kreider JL, Qian PY (1998) Settlement of the serpulid polychaete Hydroides elegans (Haswell) on arborescent bryozoans Bugula neritina (L): evidence of a chemically mediated relationship. J Exp Mar Biol Ecol 220:171–190

    Article  Google Scholar 

  7. Cao S, Wang JD, Chen HS, Chen DR (2011) Progress of marine biofouling and antifouling technologies. Chin Sci Bull 56:598–612. doi:10.1007/s11434-010-4158-4

    Article  CAS  Google Scholar 

  8. Cardwell RD, Brancato MS, Toll J, Deforest D, Tear L (1999) Aquatic ecological risks posed by tributyltin in United States surface water: pre-1989 to 1996 data. Environ Toxicol Chem 18:211–229. doi:10.1002/etc.5620180327

    Article  Google Scholar 

  9. Damare S, Raghukumar C, Muraleedharan UD, Raghukumar S (2006) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb Tech 39:172–181. doi:10.1016/j.emzmictec.2006.03.032

    Article  CAS  Google Scholar 

  10. Dash S, ** CL, Lee OO, Xu Y, Qian PY (2009) Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J Ind Microbiol Biotechnol 36:1047–1056. doi:10.1007/s10295-009-0588-x

    Article  CAS  PubMed  Google Scholar 

  11. Gao CH, Tian XP, Qi SH, Luo XM, Wang P, Zhang S (2010) Antibacterial and antilarval compounds from marine gorgonian-associated bacterium Bacillus amyloliquefaciens SCSIO 00856. J Antibiot 63:191–193. doi:10.1038/ja.2010.7

    Article  CAS  PubMed  Google Scholar 

  12. Grubbs AW, Artman III GD, Tsukamoto S, Williams RM (2007) A concise total synthesis of the notoamides C and D. Angew Chem Int Edit 119:2307–2311. doi:10.1002/ange.200604377

    Article  Google Scholar 

  13. He F, Han Z, Peng J, Qian PY, Qi SH (2013) Antifouling indole alkaloids from two marine-derived fungi. Nat Prod Commun 8:329–332

    CAS  PubMed  Google Scholar 

  14. He F, Liu Z, Yang J, Fu P, Peng J, Zhu WM, Qi SH (2012) A novel antifouling alkaloid from halotolerant fungus Penicillium sp. OUCMDZ-776. Tetrahedron Lett 53:2280–2283. doi:10.1016/j.tetlet.201202.063

    Article  CAS  Google Scholar 

  15. Kato H, Yoshida T, Tokue T, Nojiri Y, Hirota H, Ohta T, Williams RM, Tsukamoto S (2007) Notoamides A-D: prenylated indole alkaloids isolated from a marine-derived fungus, Aspergillus sp. Angew Chem Int Edit 46:2254–2256. doi:10.1002/anie.200123456

    Article  CAS  Google Scholar 

  16. Kharchenko U, Beleneva I, Dmitrieva E (2012) Antifouling potential of a marine strain, Pseudomonas aeruginosa 1242, isolated from brass microfouling in Vietnam. Int Biodeter Biodegr 75:68–75. doi:10.1016/j.ibiod.2012.05.029

    Article  CAS  Google Scholar 

  17. Kwong TFN, Miao L, Li XC, Qian PY (2006) Novel antifouling and antimicrobial compound from a marine-derived fungus Ampelomyces sp. Mar Biotech 8:634–640. doi:10.1007/s10126-005-6146-2

    Article  CAS  Google Scholar 

  18. Lau SCK, Mark KKW, Chen F, Qian PY (2002) Bioactivity of bacterial strains isolated from marine biofilms in Hong Kong water for the induction of larval settlement in the marine polychaete Hydroides elegans. Mar Ecol Prog Ser 226:301–310. doi:10.1007/s11274

    Article  Google Scholar 

  19. Li XC, Bobretsov S, Xu Y, **ao X, Hung OS, Qian PY (2006) Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling 22:187–194. doi:10.1080/0892701060780771

    Article  Google Scholar 

  20. Ma CF, Yang HJ, Zhou X, Wu B, Zhang GZ (2012) Polymeric material for anti–biofouling. Colloid Surface B 100:31–35. doi:10.1016/j.colsurfb.2012.04.045

    Article  CAS  Google Scholar 

  21. Nong XH, Zheng ZH, Zhang XY, Lu XH, Qi SH (2013) Polyketides from a marine-fungus Xylariaceae sp. Mar Drugs 11:1718–1727. doi:10.3390/md11051718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Peng J, Zhang XY, Tu ZC, Xu XY, Qi SH (2013) Alkaloids from the deep-sea-derived fungus Aspergillus westerdijkiae DFFSCS013. J Nat Prod 76:983–987. doi:10.1021/np400132m

    Article  CAS  PubMed  Google Scholar 

  23. Piazza V, Roussis V, Garaventa F, Greco G, Smyrniotopoulos V, Vagias C, Faimali M (2011) Terpenes from the Red alga Sphaerococcus coronopifolius inhibit the settlement of barnacles. Mar Biotechnol 13:764–772. doi:10.1007/s10126-010-9337-4

    Article  CAS  PubMed  Google Scholar 

  24. Qi SH, Miao L, Gao CH, Xu Y, Zhang S, Qian PY (2010) New steroids and a new alkaloid from the gorgonian Isis minorbrachyblasta: structures, cytotoxicity, and antilarval activity. Helv Chim Acta 93:511–516

    Article  CAS  Google Scholar 

  25. Qi SH, Xu Y, **ong HR, Qian PY, Zhang S (2009) Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J Microbiol Biotechnol 25:399–406. doi:10.1007/s11274-008-9904-2

    Article  CAS  Google Scholar 

  26. Qi SH, Zhang S, Qian PY, **ao ZH, Li MY (2006) Ten new antifouling briarene diterpenoids from the South China Sea gorgonian Junceella juncea. Tetrahedron 62:9123–9130. doi:10.1016/j.tet.2006.07.049

    Article  CAS  Google Scholar 

  27. Qi SH, Zhang S, Qian PY, Xu HH (2009) Antifeedant and antifouling briaranes from the South China Sea gorgonian Junceella juncea. Chem Nat Compd+ 45:49–54

    Article  CAS  Google Scholar 

  28. Qi SH, Zhang S, Yang LH, Qian PY (2008) Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracillis. Nat Prod Res 22:154–166. doi:10.1080/14786410701642441

    Article  CAS  PubMed  Google Scholar 

  29. Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T (2007) Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol 9:399–410. doi:10.1007/s1026-007-9001-9

    Article  CAS  PubMed  Google Scholar 

  30. Qian PY, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234. doi:10.1080/08927010903470815

    Article  CAS  PubMed  Google Scholar 

  31. Sun YL, He F, Liu KS, Zhang XY, Bao J, Wang YF, Nong XH, Xu XY, Qi SH (2013) Cytotoxic dihydrothiophen condensed chromones from marine-derived fungus Penicillium oxalicum. Planta Med 79:1474–1479. doi:10.1055/s-0033-1350805

    Article  CAS  PubMed  Google Scholar 

  32. Torres-Carcia G, Diaz M, Blasi D, Farras I, Fernandez I, Ariza X, Farras J, Lloyd-Willianms P, Roya M, Nicolas E (2012) Side chain anchoring of tryptophan to solid supports using a dihydropyranyl handle: synthesis of brevianamide F. Int J Pept Res Ther 18:7–19. doi:10.1007/s10989-011-9274-8

    Article  Google Scholar 

  33. Witt A, Bergman J (2001) Total syntheses of the benzodiazepine alkaloids circumdatin F and circumdatin C. J Org Chem 66:2784–2788. doi:10.1021/jo00169h

    Article  CAS  PubMed  Google Scholar 

  34. Xu Y, He HP, Schulz S, Liu X, Fusetani N, **ong HR, **ao X, Qian PY (2010) Potent antifouling compounds produced by marine Streptomyces. Bioresource Technol 101:1331–1336. doi:10.1016/j.biortech.2009.09.046

    Article  CAS  Google Scholar 

  35. Xu Y, Li HL, Li XC, **ao X, Qian PY (2009) Inhibitory effects of a branched–chain fatty acid on larval settlement of the polychaete Hydroides elegans. Mar Biotechnol 11:495–504. doi:10.1007/s10126-008-9161-2

    Article  CAS  PubMed  Google Scholar 

  36. Yebra DM, Kiil S, Dam JK (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

  37. Zhang XY, Zhang Y, Xu XY, Qi SH (2013) Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr Microbiol 67:525–530. doi:10.1007/s00284-013-03946-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support provided by the National High Technology Research and Development Program of China (863 Program, 2012AA092104), the regional innovation demonstration project of Guangdong Province marine economic development (GD2012-D01-002), the National Basic Research Program of China (2010CB833803), the National Marine Public Welfare Research Project of China (201305017), the Natural Science Foundation of China (41206139), and the National Key Technologies R&D Program (2011BAE06B04–03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hua Qi.

Additional information

X.-Y. Zhang and X.-Y. Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XY., Xu, XY., Peng, J. et al. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea. J Ind Microbiol Biotechnol 41, 741–748 (2014). https://doi.org/10.1007/s10295-014-1412-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1412-9

Keywords

Navigation