Log in

Isolation and characterization of a novel Rhodococcus strain with switchable carbonyl reductase and para-acetylphenol hydroxylase activities

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In the search for an effective biocatalyst for the reduction of acetophenones with unprotected hydroxy group on the benzene ring, a microorganism, which reduced para-acetylphenol to S-(−)-1-(para-hydroxyphenyl)ethanol under anaerobic conditions, was isolated from soil samples and the 16S rDNA study showed that it was phylogenetically affiliated with species of the genus Rhodococcus and was most similar to Rhodococcus pyridinivorans. Unexpectedly, this strain also hydroxylated para-acetylphenol to give 4-acetylcatechol in presence of oxygen, possessing para-acetylphenol hydroxylase activity. While the reduction of para-acetylphenol had an optimal reaction pH at 7 and a broad optimal temperature range (35–45 °C), the hydroxylation reached the maximum conversion at the pH range of 7–8 and 35 °C. This study identified for the first time a Rhodococcus strain with para-acetylphenol hydroxylase activity, which also contains highly enantioselective carbonyl reductase activity with potential applications for the asymmetric reduction of these less-explored but important ketones such as α-aminoacetophenone, 3′-hydroxyacetophenone and 4′-hydroxyacetophenone. The para-acetylphenol hydroxylase and carbonyl reductase activity are switchable by the reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Denopamine:

[(±)-α,α-(3,4-dimethoxyphenethylaminomethyl)-4-hydroxybenzyl alcohol]

Salmeterol:

[(±)-1,3-benzenedimethanol-4-hydroxy-α-[((6-(4-phenylbutoxy)hexyl) -amino)methyl]

MSM:

Mineral salt medium

NRM:

Nutrient-rich medium

TLC:

Thin-layer chromatography

e.e.:

Enantiomeric excess

HPLC:

High-performance liquid chromatography

References

  1. Arch JRS, Kaumann AJ (1993) β3 and atypical β-adrenoceptors. Med Res Rev 13(6):663–729

    Article  PubMed  CAS  Google Scholar 

  2. Bream RN, Ley SV, Procopiou PA (2002) Synthesis of the β2 agonist (R)-salmeterol using a sequence of supported reagents and scavenging agents. Org Lett 4(22):3793–3796. doi:10.1021/ol020128g

    Article  PubMed  CAS  Google Scholar 

  3. Buchanan DJ, Dixon DJ (2005) Looker BE (2005) A short stereoselective synthesis of (R)-salmeterol. Synlett 12:1948–1950. doi:10.1055/s-2005-871927

    Google Scholar 

  4. Coe DM, Perciaccante R, Procopiou PA (2003) Potassium trimethylsilanolate induced cleavage of 1,3-oxazolidin-2- and 5-ones, and application to the synthesis of (R)-salmeterol. Org Biomol Chem 1(7):1106–1111

    Article  PubMed  CAS  Google Scholar 

  5. Darby JM, Taylor DG, Hopper DJ (1987) Hydroquinone as the ring-fission substrate in the catabolism of 4-ethylphenol and 4-hydroxyacetophenone by Pseudomonas putida JD1. J Gen Microbiol 133(8):2137–2146. doi:10.1099/00221287-133-8-2137

    CAS  Google Scholar 

  6. Di Gennaro P, Bargna A, Sello G (2011) Microbial enzymes for aromatic compound hydroxylation. Appl Microbiol Biotechnol 90(6):1817–1827. doi:10.1007/s00253-011-3285-4

    Article  PubMed  Google Scholar 

  7. Elks J, Ganellin CR (1990) Dictionary of drugs, chemical data, structure and bibliographies, 1st edn. University Press, Cambridge

    Google Scholar 

  8. Fernandez-Arrojo L, Guazzaroni M-E, Lopez-Cortes N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21:725–733

    Article  PubMed  CAS  Google Scholar 

  9. Finkelstein ZI, Baskunov BP, Boersma MG, Vervoort J, Golovlev EL, van Berkel WJH, Golovleva LA, Rietjens IMCM (2000) Identification of fluoropyrogallols as new intermediates in biotransformation of monofluorophenols in Rhodococcus opacus LCP. Appl Environ Microbiol 66(5):2148–2153. doi:10.1128/aem.66.5.2148-2153.2000

    Article  PubMed  CAS  Google Scholar 

  10. Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part ii: whole-cell reductions. Appl Microbiol Biotechnol 76:249–255

    Article  PubMed  CAS  Google Scholar 

  11. Goswami J, Bezbaruah RL, Goswami A, Borthakur N (2001) A convenient stereoselective synthesis of (R)-(−)-denopamine and (R)-(−)-salmeterol. Tetrahedron: Asymmetry 12(24):3343–3348. doi:10.1016/s0957-4166(02)00010-1

    Google Scholar 

  12. Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Ann Rev Microbiol 46(1):565–601. doi:10.1146/annurev.mi.46.100192.003025

    Article  CAS  Google Scholar 

  13. Higson FK, Focht DD (1990) Bacterial degradation of ring-chlorinated acetophenones. Appl Environ Microbiol 56(12):3678–3685

    PubMed  CAS  Google Scholar 

  14. Hopper DJ, Jones HG, Elmorsi EA, Rhodes-Roberts ME (1985) The catabolism of 4-hydroxyacetophenone by an Alcaligenes sp. J Gen Microbiol 131(7):1807–1814. doi:10.1099/00221287-131-7-1807

    CAS  Google Scholar 

  15. Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14(2):122–129

    Article  PubMed  CAS  Google Scholar 

  16. Johnson M (1995) Salmeterol. Med Res Rev 15(3):225–257. doi:10.1002/med.2610150303

    Article  PubMed  CAS  Google Scholar 

  17. Jones KH, Trudgill PW, Hopper DJ (1993) Metabolism of p-cresol by the fungus Aspergillus fumigatus. Appl Environ Microbiol 59(4):1125–1130

    PubMed  CAS  Google Scholar 

  18. Jones KH, Trudgill PW, Hopper DJ (1994) 4-ethylphenol metabolism by Aspergillus fumigatus. Appl Environ Microbiol 60(6):1978–1983

    PubMed  CAS  Google Scholar 

  19. Kamerbeek NM, Moonen MJH, van der Ven JGM, van Berkel WJH, Fraaije MW, Janssen DB (2001) 4-hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. Eur J Biochem 268(9):2547–2557. doi:10.1046/j.1432-1327.2001.02137.x

    Article  PubMed  CAS  Google Scholar 

  20. Kamerbeek NM, Olsthoorn AJJ, Fraaije MW, Janssen DB (2003) Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase. Appl Environ Microbiol 69(1):419–426. doi:10.1128/aem.69.1.419-426.2003

    Article  PubMed  CAS  Google Scholar 

  21. Kim YJ, No JK, Lee JS, Kim MS, Chung HY (2006) Antimelanogenic activity of 3,4-dihydroxyacetophenone: inhibition of tyrosinase and MITF. Biosci Biotechnol Biochem 70(2):532–534

    Article  PubMed  CAS  Google Scholar 

  22. Kosjek B, Stampfer W, Pogorevc M, Goessler W, Faber K, Kroutil W (2004) Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions. Biotechnol Bioeng 86(1):55–62. doi:10.1002/bit.20004

    Article  PubMed  CAS  Google Scholar 

  23. Kumaraswamy G, Ramesh S (2003) Soaked Phaseolus aureus L: an efficient biocatalyst for asymmetric reduction of prochiral aromatic ketones. Green Chem 5(3):306–308

    Article  CAS  Google Scholar 

  24. Liu J, Zhou D, Jia X, Huang L, Li X, Chan ASC (2008) A convenient synthesis of (R)-salmeterol via Rh-catalyzed asymmetric transfer hydrogenation. Tetrahedron: Asymmetry 19:1824–1828

    Article  CAS  Google Scholar 

  25. Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron: Asymmetry 20:513–557. doi:10.1016/j.tetasy.2008.12.035

  26. McIntire W, Hopper DJ, Craig JC, Everhart ET, Webster RV, Causer MJ, Singer TP (1984) Stereochemistry of 1-(4′-hydroxyphenyl)ethanol produced by hydroxylation of 4-ethylphenol by p-cresol methylhydroxylase. Biochem J 224:617–621

    PubMed  CAS  Google Scholar 

  27. McIntire WS, Everhart ET, Craig JC, Kuusk V (1999) A new procedure for deconvolution of inter-/intramolecular intrinsic primary and R-secondary deuterium isotope effects from enzyme steady-state kinetic data. J Am Chem Soc 121:5865–5880

    Article  CAS  Google Scholar 

  28. Millership JS, Fitzpatrick A (1993) Commonly used chiral drugs: a survey. Chirality 5(8):573–576. doi:10.1002/chir.530050802

    Article  PubMed  CAS  Google Scholar 

  29. Moonen MJH, Kamerbeek NM, Westphal AH, Boeren SA, Janssen DB, Fraaije MW, van Berkel WJH (2008) Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB. J Bacteriol 190(15):5190–5198. doi:10.1128/jb.01944-07

    Article  PubMed  CAS  Google Scholar 

  30. Moore JC, Pollard DJ, Kosjek B, Devine PN (2007) Advances in the enzymatic reduction of ketones. Acc Chem Res 40(12):1412–1419

    Article  PubMed  CAS  Google Scholar 

  31. Neupert A, Ress T, Wittmann J, Hummel W, Groger H (2010) Enantioselective biocatalytic reduction of non-protected hydroxyacetophenones. Zeitsch Naturfor 65b:337–340

    Google Scholar 

  32. Ni Y, Xu J-H (2002) Asymmetric reduction of aryl ketones with a new isolate Rhodotorula sp. As2.2241. J Mol Catal B Enzym 18(4–6):233–241. doi:10.1016/s1381-1177(02)00101-7

    Article  CAS  Google Scholar 

  33. Paris DF, Wolfe NL, Steen WC (1982) Structure–activity relationships in microbial transformation of phenols. Appl Environ Microbiol 44(1):153–158

    PubMed  CAS  Google Scholar 

  34. Prelog V (1964) Specification of the stereospecificity of some oxidoreductases by diamond lattice sections. Pure Appl Chem 9(1):119–130

    Article  CAS  Google Scholar 

  35. Procopiou PA, Morton GE, Todd M, Webb G (2001) Enantioselective synthesis of (S)-salmeterol via asymmetric reduction of azidoketone by Pichia angusta. Tetrahedron Asymmetry 12 (14):2005–2008. doi:10.1016/s0957-4166(01)00350-0

  36. Rehdorf J, Zimmer CL, Bornscheuer UT (2009) Cloning, expression, characterization, and biocatalytic investigation of the 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1. Appl Environ Microbiol 75(10):3106–3114. doi:10.1128/aem.02707-08

    Article  PubMed  CAS  Google Scholar 

  37. Rocha LC, Ferreira HV, Pimenta EF, Berlinck RGS, Rezende MOO, Landgraf MD, Seleghim MHR, Sette LD, Porto ALM (2010) Biotransformation of α-bromoacetophenones by the marine fungus Aspergillus sydowii. Mar Biotechnol 12:552–557

    Article  PubMed  CAS  Google Scholar 

  38. Saa L, Jaureguibeitia A, Largo E, Llama M, Serra J (2010) Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis upv-1. Appl Microbiol Biotechnol 86(1):201–211. doi:10.1007/s00253-009-2251-x

    Article  PubMed  CAS  Google Scholar 

  39. Takeo M, Murakami M, Niihara S, Yamamoto K, Nishimura M, Kato D-I, Negoro S (2008) Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. Strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. J Bacteriol 190 (22):7367–7374. doi:10.1128/jb.00742-08

    Google Scholar 

  40. Takeo M, Yasukawa T, Abe Y, Niihara S, Maeda Y, Negoro S (2003) Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J Boiosci Bioeng 95(2):139–145. doi:10.1016/s1389-1723(03)80119-6

    Google Scholar 

  41. Tamura K, Dudley J, Nei M, Kumar S (2007) Mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  42. Tanner A, Hopper DJ (2000) Conversion of 4-hydroxyacetophenone into 4-phenyl acetate by a flavin adenine dinucleotide-containing Baeyer-Villiger-type monooxygenase. J Bacteriol 182(23):6565–6569. doi:10.1128/jb.182.23.6565-6569.2000

    Article  PubMed  CAS  Google Scholar 

  43. van der Werf MJ, van der Ven C, Barbirato F, Eppink MHM, de Bont JAM, van Berkel WJH (1999) Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14. J Biol Chem 274(37):26296–26304. doi:10.1074/jbc.274.37.26296

    Article  PubMed  Google Scholar 

  44. Wohlgemuth R (2010) Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724

    Article  PubMed  CAS  Google Scholar 

  45. Yadav JS, Reddy BVS, Sreelakshmi C, Rao AB (2009) Enantioselective reduction of prochiral ketones employing sprouted Pisum sativa as biocatalyst. Synthesis 11:1881–1885

    Article  Google Scholar 

  46. Yamada-Onodera K, Takase Y, Tani Y (2007) Purification and characterization of 2-aminoacetophenone reductase of newly isolated Burkholderia sp. YT. J Boiosci Bioeng 104(5):416–419

    Article  CAS  Google Scholar 

  47. Yamamoto K, Nishimura M, Kato D-i, Takeo M, Negoro S (2011) Identification and characterization of another 4-nitrophenol degradation gene cluster, nps, in Rhodococcus sp. Strain PN1. J Boiosci Bioeng 111(6):687–694. doi:10.1016/j.jbiosc.2011.01.016

  48. Zelinski T, Kula M-R (1994) A kinetic study and application of a novel carbonyl reductase isolated from Rhodococcus erythropolis. Bioorg Med Chem 2(6):421–428. doi:10.1016/0968-0896(94)80010-3

    Article  PubMed  CAS  Google Scholar 

  49. Zhao G, Wang J, Ma K, Yang L, Wu S, Liu Y, Sun W (2004) Transformation of 2-aminoacetophenone to (S)-2-amino-1-phenylethanol by Arthrobacter sulfureus. Biotechnol Lett 26(16):1255–1259. doi:10.1023/B:BILE.0000044921.03737.c2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Basic Research Program of China (973 Program, No. 2011CB710801) and Chinese Academy of Sciences (KGCX2-YW-203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaqing Wu or Dunming Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5071 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Ren, J., Wang, Y. et al. Isolation and characterization of a novel Rhodococcus strain with switchable carbonyl reductase and para-acetylphenol hydroxylase activities. J Ind Microbiol Biotechnol 40, 11–20 (2013). https://doi.org/10.1007/s10295-012-1199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1199-5

Keywords

Navigation