Log in

Initial results of distributed autonomous orbit determination for Beidou BDS-3 satellites based on inter-satellite link measurements

  • Review Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Autonomous orbit determination (AOD) is the ability of navigation satellites to estimate with accurate satellite orbit parameters using onboard using inter-satellite link (ISL) measurements. To overcome the unobservability of the constellation rotation error in AOD when using only the ISL measurements, the properties that the orbit inclination \( i \) and the longitude of the ascending node \( \varOmega \) of the medium earth orbit (MEO) navigation satellites, which can be predicted with high accuracy over a long time, are explored. This leads to an onboard extended Kalman filter (EKF) where \( \left( {i,\varOmega } \right) \) are subjected to constraints. Three experiments are carried out to assess the effectiveness of the proposed AOD EKF and analyze the causes of the constellation rotation error by processing 30-day ISL measurements of 18 MEO satellites of BDS-3 in a distributed mode. The results verify that the proposed EKF with \( \left( {i,\varOmega } \right) \) constraints can resolve the unobservable constellation rotation error issue effectively. When using precise EOP parameters, the 3D orbit errors of BDS-3 AOD in 30 days could be less than 2.30 m. The errors increase to 3.4 m when the predicted EOP parameters are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ananda MP, Bemstein H, Cunlllgham KE, Feess WA, Stroud EG (1990) Global positioning system (GPS) autonomous navigation. IEEE Locat Navig Sym 27(1):497–508

    Google Scholar 

  • Bernstein H, Bowden AF, Gartside JH (1993) GPS user position accuracy with block II-R autonomous navigation. In: Proceedings of ION GPS 1993. Institute of Navigation, Salt Lake City, Utah, USA, September 22–24, pp 1389–1399

  • Chen J et al (2020) SIS accuracy and service performance of the BDS-3 basic system. Sci China Phys Mech Astron 63(6):269511

    Article  Google Scholar 

  • CSNO (2019) Test and assessment Research Center of China Satellite Navigation Office. http://www.csno-tarc.cn/system/constellation

  • Gong X (2017) Parameter integration filter and parameter decomposition filter for autonomous navigation of BDS. GPS Solut 21(3):1405–1416

    Article  Google Scholar 

  • Mao Y, Wang Q, Hu C, He Y (2018) Accuracy analysis of BDS-3 experiment satellite broadcast ephemeris. In: China satellite navigation conference (CSNC) 2018 proceedings, Harbin, May, pp 341–354

  • Menn MD, Bernstein H (1994) Ephemeris observability issues in the global positioning system (GPS) autonomous navigation (AUTONAV). In: Proceedings IEEE/ION PLANS 1994, position location and navigation symposium, Las Vegas, Nevada, USA, April 11–15, pp 677–680

  • Montenbruck O, Gill E (2002) Satellite orbits—models, methods and applications. Appl Mech Rev 55(2):2504–2510

    Article  Google Scholar 

  • Pan JY et al (2017) Time synchronization of new-generation BDS satellites using inter-satellite link measurements. Adv Space Res 61(1):145–153

    Article  Google Scholar 

  • Rajan JA (2002) Highlights of GPS II-R autonomous navigation. In: Proceedings of ION AM 2002, Institute of Navigation, Albuquerque, NM, USA, June 24–26, pp 354–363

  • Rajan JA, Orr M (2003) On-orbit validation of GPS IIR autonomous navigation. In: Proceedings of ION AM 2003, Institute of Navigation, Albuquerque, NM, USA, June 23–25, pp 411–419

  • Rajan JA, Brodie P, Rawicz H (2003) Modernizing GPS autonomous navigation with anchor capability. In: Proceedings of ION GPS/GNSS 2003, Portland, Oregon, USA, September 9–12, pp 1534–1542

  • Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. GPS Solut 2(3):50–62

    Article  Google Scholar 

  • Tan B, Yuan Y, Zhang B, Hsu HZ, Ou J (2016) A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM. Sci Rep 6:32967

    Article  Google Scholar 

  • Tang C, Hu X, Zhou S, Pan J, Guo R, Hu G, Zhu L, Li X, Wu S, Wang Y (2017) Centralized autonomous orbit determination of Beidou navigation satellites with inter satellite link measurements: preliminary results. Sci Sin Phys Mech Astron 47(2):029501

    Article  Google Scholar 

  • Tang C et al (2018) Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. J Geod 92(10):1155–1169

    Article  Google Scholar 

  • Teunissen PJG, Montenbruck O (2017) Springer Handbook of global navigation satellite systems. Springer, Berlin

    Book  Google Scholar 

  • Wang H, Han X, He S, Chu H, Wu X (2012) The correction method of overall pseudo-rotation on autonomous navigation of navigation constellation. In: China satellite navigation conference, Guangzhou, China, May 17–20, pp 289–299

  • Wang H, Chen Q, Jia W, Tang C (2017) Research on autonomous orbit determination test based on BDS inter-satellite-link on-orbit data. In: China satellite navigation conference, Shanghai, China, May 23–25, pp 89–99

  • Wang C, Zhao Q, Guo J, Liu J, Chen G (2019) The contribution of inter satellite links to BDS-3 orbit determination: model refinement and comparisons. Navigation 66(1):71–82

    Article  Google Scholar 

  • Wen Y, Zhu J, Gong Y, Wang Q, He X (2019) Distributed orbit determination for global navigation satellite system with inter-satellite link. Sensors 19(5):1031

    Article  Google Scholar 

  • **a R, Yang Y, Zhu J, Xu T (2017) Orbit determination of the next-generation Beidou satellites with inter satellite link measurements and a priori orbit constraints. Adv Space Res 60(10):2155–2165

    Article  Google Scholar 

  • Yang D, Yang J, Li G, Zhou Y, Tang C (2017) Globalization highlight: orbit determination using BeiDou inter satellite ranging measurements. GPS Solut 21(3):1395–1404

    Article  Google Scholar 

  • Yang Y, Xu Y, Li J, Yang C (2018) Progress and performance evaluation of BeiDou global navigation satellite system: data analysis based on BDS-3 demonstration system. Sci China Earth Sci 61(5):614–624

    Article  Google Scholar 

  • Yang Y, Gao W, Guo S, Mao Y, Yang Y (2019) Introduction to BeiDou-3 navigation satellite system. Navigation 66(1):7–18

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 91638203). We would like to thank Bei**g Satellite Navigation Canter for providing the ISL data. Specific thanks appertain to the **aogong Hu and Chenpan Tang from Shanghai Astronomical Observatory for their helpful suggestions to improve the quality of the article during revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Wang, F., Gong, X. et al. Initial results of distributed autonomous orbit determination for Beidou BDS-3 satellites based on inter-satellite link measurements. GPS Solut 24, 72 (2020). https://doi.org/10.1007/s10291-020-00985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-020-00985-0

Keywords

Navigation