Log in

Deep CTS: a Deep Neural Network for Identification MRI of Carpal Tunnel Syndrome

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Carpal tunnel syndrome (CTS) is a common peripheral nerve disease in adults; it can cause pain, numbness, and even muscle atrophy and will adversely affect patients’ daily life and work. There are no standard diagnostic criteria that go against the early diagnosis and treatment of patients. MRI as a novel imaging technique can show the patient’s condition more objectively, and several characteristics of carpal tunnel syndrome have been found. However, various image sequences, heavy artifacts, small lesion characteristics, high volume of imagine reading, and high difficulty in MRI interpretation limit its application in clinical practice. With the development of automatic image segmentation technology, the algorithm has great potential in medical imaging. The challenge is that the segmentation target is too small, and there are two categories of images with the proximal border of the carpal tunnel as the boundary. To meet the challenge, we propose an end-to-end deep learning framework called Deep CTS to segment the carpal tunnel from the MR image. The Deep CTS consists of the shape classifier with a simple convolutional neural network and the carpal tunnel region segmentation with simplified U-Net. With the specialized structure for the carpal tunnel, Deep CTS can segment the carpal tunnel region efficiently and improve the intersection over union of results. The experimental results demonstrated that the performance of the proposed deep learning framework is better than other segmentation networks for small objects. We trained the model with 333 images, tested it with 82 images, and achieved 0.63 accuracy of intersection over union and 0.17 s segmentation efficiency, which indicate great promise for the clinical application of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The dataset supporting the conclusions of this article is included with the article.

Abbreviations

CTS:

Carpal tunnel syndrome

EMG:

Electromyography

NCS:

Nerve conduction study

MRI:

Magnetic resonance image

CNN:

Convolutional neural networks

FCN:

Fully convolutional networks

FOV:

Field of view

CLAHE:

Contrast Limited Adaptive Histogram Equalization

2D:

Two-dimensional

BN:

Batch normalization

ReLU:

Rectified linear unit

TP:

True positive

TN:

True negative

FP:

False positive

FN:

False negative

PA:

Pixel accuracy

IoU:

Intersection over union.

References

  1. Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam JRI: Prevalence of carpal tunnel syndrome in a general population. JAMA 282(2):153–8,1999. https://doi.org/10.1001/jama.282.2.153

    Article  CAS  PubMed  Google Scholar 

  2. Bland JD: Do nerve conduction studies predict the outcome of carpal tunnel decompression? Muscle Nerve 24(7):935–40,2001. https://doi.org/10.1002/mus.1091

    Article  Google Scholar 

  3. Lee JK, Yoon BN, Cho JW, Ryu HS, Han SH: Carpal Tunnel Release Despite Normal Nerve Conduction Studies in Carpal Tunnel Syndrome Patients. Ann Plastic Surg 86(1):52–57,2020. https://doi.org/10.1097/sap.0000000000002570

    Article  Google Scholar 

  4. Crnković T, Trkulja V, Bilić R, Gašpar D, Kolundžić R: Carpal tunnel and median nerve volume changes after tunnel release in patients with the carpal tunnel syndrome: a magnetic resonance imaging (MRI) study. Int Orthop 40(5):981–7,2016. https://doi.org/10.1007/s00264-015-3052-8

    Article  PubMed  Google Scholar 

  5. Hu X, Liu Z, Zhou H, Fang J, Lu H. Deep HT: Deep HT: A deep neural network for diagnose on MR images of tumors of the hand. PLoS One 15(8):e0237606,2020. https://doi.org/10.1371/journal.pone.0237606

    Article  CAS  Google Scholar 

  6. Itri JN, Tappouni RR, McEachern RO, Pesch AJ, Patel SH: Fundamentals of Diagnostic Error in Imaging. Radiographics : a review publication of the Radiological Society of North America, Inc, 38(6):1845–1865,2018. https://doi.org/10.1148/rg.2018180021

  7. Li X, Lu J, Hu S, Cheng KK, De Maeseneer J, Meng Q, et al: The primary health-care system in China. Lancet (London, England) 390(10112):2584–2594,2017. https://doi.org/10.1016/S0140-6736(17)33109-4

    Article  PubMed  Google Scholar 

  8. Shinjo D, Aramaki T: Geographic distribution of healthcare resources, healthcare service provision, and patient flow in Japan: a cross sectional study. Social Sci Med (1982) 75(11):1954–1963,2012. https://doi.org/10.1016/j.socscimed.2012.07.032

  9. Krizhevsky A, Sutskever I, Hinton GE: ImageNet Classification with Deep Convolutional Neural Networks. Commun ACM 60(6):84–90,2017. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  10. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions. 2015 IEEE Conf Comp Vision Pattern Recognition (CVPR) 1–9,2015. https://doi.org/10.1109/CVPR.2015.7298594

    Article  Google Scholar 

  11. He K, Zhang X, Ren S, Sun J: Deep Residual Learning for Image Recognition. 2016 IEEE Conf Comput Vision and Pattern Recognition (CVPR) 770–778,2016. https://doi.org/10.1109/CVPR.2016.90

    Article  Google Scholar 

  12. Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v 1409.1556,2014.

  13. Long J, Shelhamer E, Darrell T: Fully Convolutional Networks for Semantic Segmentation. 2015 IEEE Conf Comput Vision Pattern Recognition (CVPR) 3431–3440,2015. https://doi.org/10.1109/CVPR.2015.7298965

    Article  Google Scholar 

  14. Badrinarayanan V, Kendall A, Cipolla R: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transact Pattern Analysis Machine Intell 39(12):2481–2495,2017. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  PubMed  Google Scholar 

  15. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transact Pattern Analysis Machine Intell 40(4):834–848,2017. https://doi.org/10.1109/tpami.2017.2699184

    Article  PubMed  Google Scholar 

  16. He K, Gkioxari G, Dollár P, Girshick R: Mask R-CNN. 2017 IEEE Int Conf Comput Vision (ICCV), 2017. https://doi.org/10.1109/ICCV.2017.322

  17. Girshick R, Donahue J, Darrell T, Malik J: Rich feature hierarchies for accurate object detection and semantic segmentation. 580–587,2014

  18. Girshick R: Fast r-cnn. 1440–1448,2015

  19. Ren S, He K, Girshick R, Sun J: Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst 2015

  20. Ronneberger O, Fischer P, Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation. Int Conf Med Image Comput Comput-Assist Intervention 234–241,2015. https://doi.org/10.1007/978-3-319-24574-4_28

  21. Padua L, Coraci D, Erra C, Pazzaglia C, Paolasso I, Loreti C, et al: Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 15(12):1273–1284,2016. https://doi.org/10.1016/S1474-4422(16)30231-9

    Article  PubMed  Google Scholar 

  22. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, et al: Adaptive histogram equalization and its variations. Comput Vision Graphics Image Process 39(3):355–368,1987.

    Article  Google Scholar 

  23. Milletari F, Navab N, Ahmadi SA: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth Int Conf 3D Vision (3DV) 565–571,2016. https://doi.org/10.1109/3DV.2016.79

  24. Preston DC, Shapiro BE: Median Neuropathy at the Wrist - ScienceDirect. Electromyography Neuromusc Disorders (Third Edition) 267–288,2013

  25. Bland JD: Carpal tunnel syndrome. Curr Opin Neurol 18(5):581–585,2015. https://doi.org/10.1097/01.wco.0000173142.58068.5a

    Article  PubMed  Google Scholar 

  26. Gelfman R, Melton L3, Yawn BP, Wollan PC, Amadio PC, Stevens JC: Long-term trends in carpal tunnel syndrome. Neurology 72(1):33–41,2009. https://doi.org/10.1212/01.wnl.0000338533.88960.b9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pourmemari MH, Heliövaara M, Viikari‐Juntura E, Shiri R: Carpal tunnel release: Lifetime prevalence, annual incidence, and risk factors. Muscle Nerve 58(4):497–502,2018. https://doi.org/10.1002/mus.26145

    Article  PubMed  Google Scholar 

  28. Padua L, Padua R, Aprile I, Pasqualetti P, Tonali P: Multiperspective follow-up of untreated carpal tunnel syndrome: a multicenter study. Neurology 56(11):1459–1466,2021. https://doi.org/10.1212/wnl.56.11.1459

    Article  CAS  PubMed  Google Scholar 

  29. Verdugo RJ, Salinas RA, Castillo JL, Cea JG.: Surgical versus non-surgical treatment for carpal tunnel syndrome. The Cochrane database of systematic reviews, 2008(4):CD001552,2008. https://doi.org/10.1002/14651858.CD001552.pub2

  30. Jablecki CK, Andary MT, So YT, Wilkins DE, Williams FH: Literature review of the usefulness of nerve conduction studies and electromyography for the evaluation of patients with carpal tunnel syndrome. AAEM Quality Assurance Committee. Muscle Nerve 16(12):1392–414,1993. https://doi.org/10.1002/mus.880161220

    Article  CAS  PubMed  Google Scholar 

  31. Jarvik JG, Yuen E, Kliot M: Diagnosis of carpal tunnel syndrome: Electrodiagnostic and MR imaging evaluation. Neuroimaging Clin North Am 14(1):93–102,2004. https://doi.org/10.1016/j.nic.2004.02.002

    Article  PubMed  Google Scholar 

  32. Mackinnon SE: Pathophysiology of nerve compression. Hand Clin 18(2):231–241,2002. https://doi.org/10.1016/S0749-0712(01)00012-9

    Article  PubMed  Google Scholar 

  33. Padua L, Padua R, Aprile I, D'Amico P, Tonali P: Carpal tunnel syndrome: Relationship between clinical and patient-oriented assessment. Clin Orthop Related Res (395):128–134,2002. https://doi.org/10.1097/00003086-200202000-00013

    Article  Google Scholar 

  34. Wright SA, Liggett N: Nerve conduction studies as a routine diagnostic aid in carpal tunnel syndrome. Rheumatology (Oxford) 42(4):602–3,2003. https://doi.org/10.1093/rheumatology/keg138

    Article  CAS  PubMed  Google Scholar 

  35. Roll SC, Case-Smith J, Evans KD: Diagnostic accuracy of ultrasonography vs. electromyography in carpal tunnel syndrome: a systematic review of literature. Ultrasound Med Biol 37(10):1539–1553,2011. https://doi.org/10.1016/j.ultrasmedbio.2011.06.011

  36. Brienza M, Pujia F, Colaiacomo MC, Anastasio MG, Pierelli F, Di Biasi C, et al: 3T diffusion tensor imaging and electroneurography of peripheral nerve: a morphofunctional analysis in carpal tunnel syndrome. J Neuroradiol = J de Neuroradiologie 41(2):124–130,2014. https://doi.org/10.1016/j.neurad.2013.06.001

  37. Barcelo C, Faruch M, Lapègue F, Bayol MA, Sans N: 3-T MRI with diffusion tensor imaging and tractography of the median nerve. Eur Radiol 23(11):3124–3130,2013. https://doi.org/10.1007/s00330-013-2955-2

    Article  PubMed  Google Scholar 

  38. Jarvik JG, Kliot M, Maravilla KR: MR nerve imaging of the wrist and hand. Hand Clin 16(1):13–24,2000.

    Article  CAS  PubMed  Google Scholar 

  39. Kleindienst A, Hamm B, Lanksch WR: Carpal tunnel syndrome: Staging of median nerve compression by MR imaging. J Magn Resonance Imaging 8(5):1119–1125,1998. https://doi.org/10.1002/jmri.1880080518

    Article  CAS  PubMed  Google Scholar 

  40. Ng AW, Griffith JF, Lee RK, Tse WL, Wong CW, Ho PC: Ultrasound carpal tunnel syndrome: additional criteria for diagnosis. Clin Radiol 73(2):214.e11-214.e18,2018. https://doi.org/10.1016/j.crad.2017.07.025

    Article  CAS  PubMed  Google Scholar 

  41. Radack DM, Schweitzer ME, Taras J: Carpal Tunnel Syndrome: Are the MR Findings a Result of Population Selection Bias? Am J Roentgenol 169(6):1649–1653,1997. https://doi.org/10.2214/ajr.169.6.9393185

    Article  CAS  PubMed  Google Scholar 

  42. Somay G, Somay H, Çevik D, Sungur F, Berkman Z: The pressure angle of the median nerve as a new magnetic resonance imaging parameter for the evaluation of carpal tunnel. Clin Neurol Neurosurg 111(1):28–33,2009. https://doi.org/10.1016/j.clineuro.2008.07.008

    Article  PubMed  Google Scholar 

  43. Tsujii M, Hirata H, Morita A, Uchida A: Palmar Bowing of the Flexor Retinaculum on Wrist MRI Correlates With Subjective Reports of Pain in Carpal Tunnel Syndrome. J Magn Resonance Imaging 29(5):1102–1105,2009. https://doi.org/10.1002/jmri.21459

    Article  PubMed  Google Scholar 

  44. Cha JG, Han JK, Im SB, Kang SJ: Median nerve T2 assessment in the wrist joints: Preliminary study in patients with carpal tunnel syndrome and healthy volunteers. J Magn Resonance Imaging 40(4):789–795,2014. https://doi.org/10.1002/jmri.24448

    Article  PubMed  Google Scholar 

  45. Pasternack II, Malmivaara A, Tervahartiala P, Forsberg H, Vehmas T: Magnetic resonance imaging findings in respect to carpal tunnel syndrome. Scand J Work Environ Health 29(3):189–96,2003.

    Article  PubMed  Google Scholar 

  46. Britz GW, Haynor DR, Kuntz C, Goodkin R, Gitter A, Kliot M: Carpal tunnel syndrome: correlation of magnetic resonance imaging, clinical, electrodiagnostic, and intraoperative findings. Neurosurgery 37(6):1097–103,1995. https://doi.org/10.1227/00006123-199512000-00009

    Article  CAS  PubMed  Google Scholar 

  47. Dailey AT, Tsuruda JS, Filler AG, Maravilla KR, Goodkin RKM: Magnetic resonance neurography of peripheral nerve degeneration and regeneration. Lancet 350(9086):1221–2,1997. https://doi.org/10.1016/S0140-6736(97)24043-2

    Article  CAS  PubMed  Google Scholar 

  48. Duncan I, Sullivan P, Lomas F: Sonography in the diagnosis of carpal tunnel syndrome. AJR Am J Roentgenol 173(3):681–4,1999. https://doi.org/10.2214/ajr.173.3.10470903

    Article  CAS  PubMed  Google Scholar 

  49. Allmann KH, Horch R, Uhl M, Gufler H, Altehoefer C, Stark GB, Langer M: MR imaging of the carpal tunnel. Eur J Radiol 25(2):141–145,1997. https://doi.org/10.1016/S0720-048X(96)01038-8

    Article  CAS  PubMed  Google Scholar 

  50. Martins RS, Siqueira MG, Simplício H, Agapito D, Medeiros M: Magnetic resonance imaging of idiopathic carpal tunnel syndrome: Correlation with clinical findings and electrophysiological investigation. Clin Neurol Neurosurg 110(1):38–45,2008. https://doi.org/10.1016/j.clineuro.2007.08.025

    Article  CAS  PubMed  Google Scholar 

  51. Buchberger W: Radiologic imaging of the carpal tunnel. Eur J Radiol 25(2):112–7,1997. https://doi.org/10.1016/s0720-048x(97)00038-7

    Article  Google Scholar 

  52. Horch RE, Allmann KH, Laubenberger J, Langer M, Björn Stark G: Median nerve compression can be detected by magnetic resonance imaging of the carpal tunnel. Neurosurgery 41(1):76–83,1997. https://doi.org/10.1097/00006123-199707000-00016

    Article  CAS  PubMed  Google Scholar 

  53. Teresi, L. M., Hovda, D., Seeley, A. B., Nitta, K., & Lufkin, R. B. (1989). MR imaging of experimental demyelination. Am J Neuroradiol 10(2):307–314.1989.

    PubMed Central  Google Scholar 

  54. Chammas M, Boretto J, Burmann LM, Ramos RM, Dos Santos Neto FC, Silva JB: Carpal tunnel syndrome - Part I (anatomy, physiology, etiology and diagnosis). Rev Bras Ortop 49(5):429–36,2014. https://doi.org/10.1016/j.rboe.2014.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cohen J: A coefficient of agreement for nominal scales. Educ Psych Meas 20:37–46,1960.

    Article  Google Scholar 

  56. Brigham LR, Mansouri M, Abujudeh HH: Journal Club: Radiology Report Addenda: A Self-Report Approach to Error Identification, Quantification, and Classification. AJR Am J Roentgenol 205(6):1230–1239,2015. https://doi.org/10.2214/AJR.15.14891

    Article  PubMed  Google Scholar 

  57. Liles AL, Francis IR, Kalia V, Kim J, Davenport MS: Common Causes of Outpatient CT and MRI Callback Examinations: Opportunities for Improvement. AJR Am J Roentgenol 214(3):487–492,2020. https://doi.org/10.2214/AJR.19.21839

    Article  PubMed  Google Scholar 

  58. Kostrubiak DE, DeHay PW, Ali N, D’Agostino R, Keating DP, Tam JK, Akselrod DG: Body MRI Subspecialty Reinterpretations at a Tertiary Care Center: Discrepancy Rates and Error Types. AJR Am J Roentgenol 215(6):1384–1388,2020. https://doi.org/10.2214/AJR.20.22797

    Article  PubMed  Google Scholar 

  59. Nishie A, Kakihara D, Nojo T, Nakamura K, Kuribayashi S, Kadoya M, et al: Current radiologist workload and the shortages in Japan: how many full-time radiologists are required? Japanese J Radiol 33(5):266–272,2015. https://doi.org/10.1007/s11604-015-0413-6

    Article  PubMed  Google Scholar 

  60. Maurer MH, Brönnimann M, Schroeder C, Ghadamgahi E, Streitparth F, Heverhagen JT, et al: Time Requirement and Feasibility of a Systematic Quality Peer Review of Reporting in Radiology. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 193(2):160–167,2021. https://doi.org/10.1055/a-1178-1113

    Article  PubMed  Google Scholar 

  61. Renzulli M, Brocchi S, Pettinari I, Biselli M, Clemente A, Corcioni B, et al: New MRI series for kidney evaluation: Saving time and money. British J Radiol 92(1099):20190260,2019. https://doi.org/10.1259/bjr.20190260

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Alibaba Cloud.

Funding

The study was funded by the National Natural Science Foundation of China (grant number 81702135), Zhejiang Provincial Natural Science Foundation (grant number LY20H060007, LS21H060001), Zhejiang Traditional Chinese Medicine Research Program (grant number 2017ZB057), and Alibaba Youth Studio Project (the grant number ZJU-032). The funding bodies had no role in the design of the study; in collection, analysis, and interpretation of data; and in drafting the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HL designed the study; HY Z, AA, YZ D, and QJ B performed data collection; QB, XL H, and JY F analyzed the results; and MHAHA, SHAE, VGK, and ZW W drafted the manuscript. The authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hui Lu.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study protocols were approved by the Medical Ethics Committee of the First Affiliated Hospital of the College of Medicine, Zhejiang University (ethics approval number: 2021(224)).

Consent for Publication

Written informed consent was obtained from the patient for publication of clinical details and clinical images. Upon request, a copy of the consent form is available for review by the editor of this journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Bai, Q., Hu, X. et al. Deep CTS: a Deep Neural Network for Identification MRI of Carpal Tunnel Syndrome. J Digit Imaging 35, 1433–1444 (2022). https://doi.org/10.1007/s10278-022-00661-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00661-4

Keywords

Navigation