Log in

Effects of experimental in-office bleaching gels incorporated with co-doped titanium dioxide nanoparticles on dental enamel physical properties

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

To evaluate the physical properties of enamel submitted to hydrogen peroxide (HP) incorporated with titanium dioxide nanoparticles (NP) co-doped with nitrogen and fluorine and irradiated with violet LED light (LT). Enamel–dentin disks were randomly allocated (T0) into groups, according to HP (HP6, HP15, or HP35) and NP (no NP, 5NP, or 10NP) concentrations, and irradiated or not with LT. A negative control (NC) group was set. After three bleaching sessions (T1, T2, and T3), specimens were stored in saliva for 14 days (T4). Enamel surface microhardness number (KHN), surface roughness (Ra), cross-sectional microhardness (ΔS), energy-dispersive spectroscopy (EDS), scanning electron (SEM), and polarized light (PLM) microscopies were performed. Surface KHN was significantly influenced by NP over time, independently of LT irradiation. At T3 and T4, gels with 5NP and 10NP exhibited no KHN differences compared to NC and baseline values, which were not observed under the absence of NP. NP incorporation did not statistically interfere with the ΔS and Ra. PLM images exhibited surface/subsurface darkening areas suggestive of demineralizing regions. SEM demonstrated some intraprismatic affection in the groups without NP. EDS reported a higher enamel calcium to phosphorus ratio following 10NP gels applications. Gels with NP maintained the enamel surface microhardness levels and seemed to control surface morphology, upholding the mineral content. None of the proposed experimental protocols have negatively influenced the enamel surface roughness and the cross-sectional microhardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Data will be provided upon request.

References

  1. Rodríguez-Martínez J, Valiente M, Sánchez-Martín MJ. Tooth whitening: from the established treatments to novel approaches to prevent side effects. J Esthet Restor Dent. 2019;31(5):431–40.

    Article  PubMed  Google Scholar 

  2. Pini NIP, Piccelli MR, Vieira-Junior WF, Ferraz LN, Aguiar FHB, Lima D. In-office tooth bleaching with chitosan-enriched hydrogen peroxide gels: in vitro results. Clin Oral Investig. 2022;26(1):471–9.

    Article  PubMed  Google Scholar 

  3. Kutuk ZB, Ergin E, Cakir FY, Gurgan S. Effects of in-office bleaching agent combined with different desensitizing agents on enamel. J Appl Oral Sci. 2018;27: e20180233.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Berger SB, Cavalli V, Ambrosano GM, Giannini M. Changes in surface morphology and mineralization level of human enamel following in-office bleaching with 35% hydrogen peroxide and light irradiation. Gen Dent. 2010;58(2):e74–9.

    PubMed  Google Scholar 

  5. Polydorou O, Scheitza S, Spraul M, Vach K, Hellwig E. The effect of long-term use of tooth bleaching products on the human enamel surface. Odontology. 2018;106(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  6. Sa Y, Sun L, Wang Z, Ma X, Liang S, **ng W, Jiang T, Wang Y. Effects of two in-office bleaching agents with different pH on the structure of human enamel: an in situ and in vitro study. Oper Dent. 2013;38(1):100–10.

    Article  CAS  PubMed  Google Scholar 

  7. Pinto A, Bridi EC, Amaral F, Franca F, Turssi CP, Perez CA, Martinez EF, Florio FM, Basting RT. Enamel mineral content changes after bleaching with high and low hydrogen peroxide concentrations: colorimetric spectrophotometry and total reflection X-ray fluorescence analyses. Oper Dent. 2017;42(3):308–18.

    Article  PubMed  Google Scholar 

  8. Coceska E, Gjorgievska E, Coleman NJ, Gabric D, Slipper IJ, Stevanovic M, Nicholson JW. Enamel alteration following tooth bleaching and remineralization. J Microsc. 2016;262(3):232–44.

    Article  CAS  PubMed  Google Scholar 

  9. Kwon SR, Wertz PW. Review of the mechanism of tooth whitening. J Esthet Restor Dent. 2015;27(5):240–57.

    Article  PubMed  Google Scholar 

  10. Cavalli V, Rosa DAD, Silva DPD, Kury M, Liporoni PCS, Soares LES, Martins AA. Effects of experimental bleaching agents on the mineral content of sound and demineralized enamels. J Appl Oral Sci. 2018;26: e20170589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cavalli V, Rodrigues LK, Paes-Leme AF, Soares LE, Martin AA, Berger SB, Giannini M. Effects of the addition of fluoride and calcium to low-concentrated carbamide peroxide agents on the enamel surface and subsurface. Photomed Laser Surg. 2011;29(5):319–25.

    Article  CAS  PubMed  Google Scholar 

  12. Loguercio AD, Servat F, Stanislawczuk R, Mena-Serrano A, Rezende M, Prieto MV, Cereno V, Rojas MF, Ortega K, Fernandez E, Reis A. Effect of acidity of in-office bleaching gels on tooth sensitivity and whitening: a two-center double-blind randomized clinical trial. Clin Oral Investig. 2017;21(9):2811–8.

    Article  CAS  PubMed  Google Scholar 

  13. Torres C, Zanatta RF, Silva TJ, Borges AB. Effect of calcium and fluoride addition to hydrogen peroxide bleaching gel on tooth diffusion, color, and microhardness. Oper Dent. 2019;44(4):424–32.

    Article  PubMed  Google Scholar 

  14. Andrade AC, Tenuta LM, Borges AB, Torres CR. Effect of a hydrogen peroxide bleaching agent with calcium and phosphorus-containing salts on enamel surface hardness and roughness. Am J Dent. 2021;34(4):215–21.

    PubMed  Google Scholar 

  15. de Almeida LC, Soares DG, Gallinari MO, de Souza Costa CA, Dos Santos PH, Briso AL. Color alteration, hydrogen peroxide diffusion, and cytotoxicity caused by in-office bleaching protocols. Clin Oral Investig. 2015;19(3):673–80.

    Article  PubMed  Google Scholar 

  16. Soares DG, Basso FG, Hebling J, de Souza Costa CA. Concentrations of and application protocols for hydrogen peroxide bleaching gels: effects on pulp cell viability and whitening efficacy. J Dent. 2014;42(2):185–98.

    Article  CAS  PubMed  Google Scholar 

  17. Carlos NR, Basting RT, Amaral F, Franca FMG, Turssi CP, Kantovitz KR, Bronze-Uhle ES, Lisboa Filho PN, Cavalli V, Basting RT. Physicochemical evaluation of hydrogen peroxide bleaching gels containing titanium dioxide catalytic agent, and their influence on dental color change associated with violet LED. Photodiagnosis Photodyn Ther. 2022;41: 103254.

    Article  PubMed  Google Scholar 

  18. Dias MF, Martins BV, de Oliveira Ribeiro RA, Hebling J, de Souza Costa CA. Improved esthetic efficacy and reduced cytotoxicity are achieved with a violet LED irradiation of manganese oxide-enriched bleaching gels. Lasers Med Sci. 2022;38(1):2.

    Article  PubMed  Google Scholar 

  19. Ribeiro R, de Oliveira Duque CC, Ortecho-Zuta U, Leite ML, Hebling J, Soares DG, de Souza Costa CA. Influence of manganese oxide on the esthetic efficacy and toxicity caused by conventional in-office tooth bleaching therapy. Oper Dent. 2022;47(4):425–36.

    Article  PubMed  Google Scholar 

  20. Soares DG, Marcomini N, Duque CCO, Bordini EAF, Zuta UO, Basso FG, Hebling J, Costa CAS. Increased whitening efficacy and reduced cytotoxicity are achieved by the chemical activation of a highly concentrated hydrogen peroxide bleaching gel. J Appl Oral Sci. 2019;27: e20180453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kury M, Hiers RD, Zhao YD, Picolo MZD, Hsieh J, Khajotia SS, Esteban Florez FL, Cavalli V. Novel experimental in-office bleaching gels containing co-doped titanium dioxide nanoparticles. Nanomaterials (Basel). 2022;12(17):2995.

    Article  CAS  PubMed  Google Scholar 

  22. Esteban Florez FL, Hiers RD, Larson P, Johnson M, O’Rear E, Rondinone AJ, Khajotia SS. Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2018;93:931–43.

    Article  CAS  PubMed  Google Scholar 

  23. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dionysiou DD. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B: Environm. 2012;125:331–49.

    Article  CAS  Google Scholar 

  24. Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2012;90(6):1847–68.

    Article  Google Scholar 

  25. Queiroz CS, Hara AT, Paes Leme AF, Cury JA. pH-cycling models to evaluate the effect of low fluoride dentifrice on enamel de- and remineralization. Braz Dent J. 2008;19(1):21–7.

    Article  PubMed  Google Scholar 

  26. Kury M, Perches C, da Silva DP, André CB, Tabchoury CPM, Giannini M, Cavalli V. Color change, diffusion of hydrogen peroxide, and enamel morphology after in-office bleaching with violet light or nonthermal atmospheric plasma: an in vitro study. J Esthet Rest Dent. 2020;32(1):102–12.

    Article  Google Scholar 

  27. Kury M, Wada EE, da Silva PS, Picolo MZD, Giannini M, Cavalli V. Colorimetric evaluation after in-office tooth bleaching with violet LED: 6- and 12-month follow-ups of a randomized clinical tria. Clin Oral Investig. 2022;26(1):37–847.

    Article  Google Scholar 

  28. Eskelsen E, Catelan A, Hernades N, Soares LES, Cavalcanti AN, Aguiar FHB, Liporoni PCS. Physicochemical changes in enamel submitted to pH cycling and bleaching treatment. Clin Cosmet Investig Dent. 2018;10:281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palandi SDS, Kury M, Picolo MZD, Coelho CSS, Cavalli V. Effects of activated charcoal powder combined with toothpastes on enamel color change and surface properties. J Esthet Restor Dent. 2020;32(8):783–90.

    Article  PubMed  Google Scholar 

  30. Ana PA, Tabchoury CPM, Cury JA, Zezell DM. Effect of Er, Cr:YSGG laser and professional fluoride application on enamel demineralization and on fluoride retention. Caries Res. 2012;46(5):441–51.

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi RS, Picolo MZD, Kury M, Resende BA, Esteban Florez FL, Cavalli V. Effects of dental bleaching protocols with violet radiation on the color and chemical composition of stained bovine enamel. Photodiagnosis Photodyn Ther. 2021;34: 102194.

    Article  CAS  PubMed  Google Scholar 

  32. Parreiras SO, Vianna P, Kossatz S, Loguercio AD, Reis A. Effects of light activated in-office bleaching on permeability, microhardness, and mineral content of enamel. Oper Dent. 2014;39(5):E225–30.

    Article  CAS  PubMed  Google Scholar 

  33. Goyal K, Saha SG, Bhardwaj A, Saha MK, Bhapkar K, Paradkar S. A comparative evaluation of the effect of three different concentrations of in-office bleaching agents on microhardness and surface roughness of enamel: an in vitro study. Dent Res J (Isfahan). 2021;18:49.

    Article  PubMed  Google Scholar 

  34. Junior NAN, Nunes GP, Gruba AS, Danelon M, da Silva L, de Farias BG, Briso ALF, Delbem ACB. Evaluation of bleaching efficacy, microhardness, and trans-amelodentinal diffusion of a novel bleaching agent for an in-office technique containing hexametaphosphate and fluoride. Clin Oral Investig. 2022;26(7):5071–8.

    Article  PubMed  Google Scholar 

  35. Torres C, Moecke SE, Mafetano A, Cornelio LF, Di Nicolo R, Borges AB. Influence of viscosity and thickener on the effects of bleaching gels. Oper Dent. 2022;47(3):E119–30.

    Article  PubMed  Google Scholar 

  36. Soldani P, Amaral CM, Rodrigues JA. Microhardness evaluation of in situ vital bleaching and thickening agents on human dental enamel. Int J Periodontics Restor Dent. 2010;30(2):203–11.

    Google Scholar 

  37. van der Reijden WA, Buijs MJ, Damen JJ, Veerman EC, ten Cate JM, Nieuw AV, Amerongen A. Influence of polymers for use in saliva substitutes on de- and remineralization of enamel in vitro. Caries Res. 1997;31(3):216–23.

    Article  PubMed  Google Scholar 

  38. Ajcharanukul O, Kosakarn P, Sujjapong M, Berkbandee S, Bussabong P. Increased fluorohydroxyapatite across dentin after fluoride iontophoresis. J Dent Res. 2024;29:220345241254017. https://doi.org/10.1177/00220345241254017.

    Article  Google Scholar 

  39. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A. Dental caries. Nat Rev Dis Prim. 2017;3:17030.

    Article  PubMed  Google Scholar 

  40. Borges AB, Torres CR, de Souza PA, Caneppele TM, Santos LF, Magalhaes AC. Bleaching gels containing calcium and fluoride: effect on enamel erosion susceptibility. Int J Dent. 2012;2012: 347848.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vieira I, Vieira-Junior WF, Pauli MC, Theobaldo JD, Aguiar FH, Lima DA, Leonardi GR. Effect of in-office bleaching gels with calcium or fluoride on color, roughness, and enamel microhardness. J Clin Exp Dent. 2020;12(2):e116–22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun L, Liang S, Sa Y, Wang Z, Ma X, Jiang T, Wang Y. Surface alteration of human tooth enamel subjected to acidic and neutral 30% hydrogen peroxide. J Dent. 2011;39(10):686–92.

    Article  CAS  PubMed  Google Scholar 

  43. Seifollah-Nasrazadani SH. Handbook of materials failure analysis with case studies from the oil and gas industry. Butterworth-Heinemann; 2011. p. 39–54.

    Google Scholar 

  44. Noronha Mdos S, Romão DA, Cury JA, Tabchoury CP. Effect of fluoride concentration on reduction of enamel demineralization according to the cariogenic challenge. Braz Dent J. 2016;27(4):393–8. https://doi.org/10.1590/0103-6440201600831. (PMID: 27652699).

    Article  PubMed  Google Scholar 

  45. Moecke SE, Silva A, Andrade ACM, Borges AB. Torres CRG/ efficacy of S-PRG filler varnishes on enamel caries remineralization. J Dent. 2022;119: 104074.

    Article  CAS  PubMed  Google Scholar 

  46. Featherstone JD, ten Cate JM, Shariati M, Arends J. Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res. 1983;17(5):385–91. https://doi.org/10.1159/000260692.

    Article  CAS  PubMed  Google Scholar 

  47. Kielbassa AM, Wrbas KT, Schulte-Mönting J, Hellwig E. Correlation of transversal microradiography and microhardness on in situ-induced demineralization in irradiated and nonirradiated human dental enamel. Arch Oral Bio. 1999;44(3):243–51. https://doi.org/10.1016/s0003-9969(98)00123-x. (PMID: 10217515).

    Article  CAS  Google Scholar 

  48. dos Santos ALE, Delbem ACB, Danelon M, Marcon LN, Shinohara MS. Evaluation of new compositions of 10% hydrogen peroxide-based bleaching agents containing trimetaphosphate and fluoride on enamel demineralization. Eur J Oral Sci. 2020;128(5):450–6.

    Article  PubMed  Google Scholar 

  49. Borges AB, de Abreu FS, Mailart MC, Zanatta RF, Torres C. Efficacy and safety of bleaching gels according to application protocol. Oper Dent. 2021;46(2):E105–16.

    Article  CAS  PubMed  Google Scholar 

  50. Wijetunga CL, Otsuki M, Abdou A, Luong MN, Qi F, Tagami J. The effect of in-office bleaching materials with different pH on the surface topography of bovine enamel. Dent Mater J. 2021;40(6):1345–51.

    Article  CAS  PubMed  Google Scholar 

  51. Grazioli G, Valente LL, Isolan CP, Pinheiro HA, Duarte CG, Münchow EA. Bleaching and enamel surface interactions resulting from the use of highly-concentrated bleaching gels. Arch Oral Biol. 2018;87:157–62.

    Article  CAS  PubMed  Google Scholar 

  52. Dos Anjos HA, Ortiz MIG, Aguiar FHB, Dos Santos JJ, Rodrigues UP, Rischka K, Lima DANL. Effect of incorporation of calcium polyphosphate sub-microparticles in low-concentration bleaching gels on physical properties of dental enamel. Odontology. 2023. https://doi.org/10.1007/s10266-023-00875-0. (PMID: 38148447).

    Article  PubMed  Google Scholar 

  53. Martins BV, Dias MF, de Oliveira Ribeiro RA, Leite M, Hebling J, de Souza Costa CA. Innovative strategy for in-office tooth bleaching using violet LED and biopolymers as H(2)O(2) catalysts. Photodiagnosis Photodyn Ther. 2022;38: 102886.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the valuable contribution of the Microscopy and Image Center (CMI) from Piracicaba School of Dentistry (University of Campinas, Piracicaba, São Paulo, Brazil) for the assistance in microscopy analyses.

Funding

This research was funded by São Paulo State Research Foundation (FAPESP) [#2019/02393–6 and #2020/06782–4]. The authors gratefully acknowledge the Fulbright Brazil, Fulbright Scholarship Board and The Bureau of the Educational and Cultural Affairs of the United States Department of State for a scholarship granted to the first author (M.K.), who participated in the program Doctoral Dissertation Research Award. This study was also supported in part by Coordenação de Aperfeiçoamento de Pessoal do Nível Superior (CAPES)–001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus Kury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kury, M., Esteban Florez, F.L., Tabchoury, C.P.M. et al. Effects of experimental in-office bleaching gels incorporated with co-doped titanium dioxide nanoparticles on dental enamel physical properties. Odontology (2024). https://doi.org/10.1007/s10266-024-00976-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10266-024-00976-4

Keywords

Navigation