Log in

High-order Soliton Matrix for the Third-order Flow Equation of the Gerdjikov-Ivanov Hierarchy Through the Riemann-Hilbert Method

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

The Gerdjikov-Ivanov (GI) hierarchy is derived via recursion operator, in this article, we mainly investigate the third-order flow GI equation. In the framework of the Riemann-Hilbert method, the soliton matrices of the third-order flow GI equation with simple zeros and elementary high-order zeros of Riemann-Hilbert problem are constructed through the standard dressing process. Taking advantage of this result, some properties and asymptotic analysis of single soliton solution and two soliton solution are discussed, and the simple elastic interaction of two soliton are proved. Compared with soliton solution of the classical second-order flow, we find that the higher-order dispersion term affects the propagation velocity, propagation direction and amplitude of the soliton. Finally, by means of a certain limit technique, the high-order soliton solution matrix for the third-order flow GI equation is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H. The inverse scattering transform-ourier analysis for nonlinear problems. Stud. Appl. Math., 53(4): 249–315 (1974)

    Article  Google Scholar 

  2. Beals, R., Coifman, R.R. Scattering and inverse scattering for first order systems. Comm. Pure Appl. Math., 37(1): 39–90 (1984)

    Article  MathSciNet  Google Scholar 

  3. Chen, H.H., Lee, Y.C., Liu, C.S. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr., 20: 490–492 (1979)

    Article  MathSciNet  Google Scholar 

  4. Dai, H.H, Fan, E.G. Variable separation and algebro-geometric solutions of the Gerdjikov-Ivanov equation. Chaos, Solitons Fractals., 22(1): 93–101 (2004)

    Article  MathSciNet  Google Scholar 

  5. Das, A. Integrable models. World Scientific, Singapore, 1989

    Book  Google Scholar 

  6. Deift, P., Zhou, X. A steepest descent method for oscillatory Riemann-Hilbert problems. Annals of Mathematics, 137: 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  7. Fan, E.G. Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation. J. Phys. A: Math. Theor., 33: 6925–6933 (2000)

    Article  MathSciNet  Google Scholar 

  8. Fan, E.G. Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation. J. Math. Phys., 41(11): 7769–7782 (2000)

    Article  MathSciNet  Google Scholar 

  9. Fan, E.G. Integrable systems of derivative nonlinear Schrödinger type and their multi-Hamiltonian structure. J. Phys. A: Math. Gen., 34: 513–519 (2001)

    Article  Google Scholar 

  10. Gagnon, L., Stiévenart, N. N-soliton interaction in optical fibers: The multiple-pole case. Opt. Lett., 19(9): 619–621 (1994)

    Article  Google Scholar 

  11. Gardner, C.S., Greene, J.M., Kruskal M.D., Miura R.M. Method for solving the Kortcmeg-de Vries equation. Phys. Rev. Lett., 19(19): 1095–1097 (1967)

    Article  Google Scholar 

  12. Gerdjikov, V.S, Ivanov, M.I. A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures. Bulg. J. Phys., 10: 130–143 (1983)

    MathSciNet  Google Scholar 

  13. Guo, B.L., Ling, L.M. Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys., 53(7): 073506 (2012)

    Article  MathSciNet  Google Scholar 

  14. Hu, B., Zhang, L., Zhang, N. On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. Journal of Computational and Applied Mathematics, 390: 113393 (2021)

    Article  Google Scholar 

  15. Hu, J., Xu, J., Yu, G.F. Riemann-Hilbert approach and N-soliton formula for a higher-order Chen-Lee-Liu equation. Journal of Nonlinear Mathematical Physics., 25(4): 633–649 (2018)

    Article  MathSciNet  Google Scholar 

  16. Johnson, R.S. On the modulation of water waves in the neighbourhood of kh ≈ 1.363. Proc. Roy. Soc. London Ser. A., 357: 131–141 (1977)

    Article  MathSciNet  Google Scholar 

  17. Kaup, D.J., Newell, A.C. An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys., 19: 798–801 (1978)

    Article  Google Scholar 

  18. Kodama, Y. Optical solitons in a monomode fiber. J. Statist. Phys., 39: 597–614 (1985)

    Article  MathSciNet  Google Scholar 

  19. Ma, W.X. Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real World Appl., 47: 1–17 (2019)

    Article  MathSciNet  Google Scholar 

  20. Nie, H., Zhu, J.Y., Geng, X.G. Trace formula and new form of N-soliton to the Gerdjikov-Ivanov equation. Anal. Math. Phys., 8: 415–426 (2018)

    Article  MathSciNet  Google Scholar 

  21. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E. Theory of solitons: the inverse scattering method. Consultants Bureau, New York, London, 1984

    Google Scholar 

  22. Peng, W. Q., Chen, Y. Double and triple pole solutions for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions. J. Math. Phys. (63): 033502 (2022)

  23. Shabat, A.B. One dimensional perturbations of a differential operator and the inverse scattering problem. Problems in Mechanics and Mathematical Physics., 279–296 (1976)

  24. Shchesnovich, V.S., Yang, J.K. Higher-Order solitons in the N-wave system. Stud. Appl. Math., 110(4): 297–332 (2003)

    Article  MathSciNet  Google Scholar 

  25. Tian, S.F., Zhang, T.T. Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc. Amer. Math.Soc., 146: 1713–1729 (2018)

    Article  MathSciNet  Google Scholar 

  26. Wang, D. S., Zhang, D. J., Yang, J.k. Integrable properties of the general coupled nonlinear Schröodinger equations. J. Math. Phys., (51): 023510 (2010)

  27. Xu, J, Fan, E.G., Chen, Y. Long-time asymptotic for the derivative nonlinear Schroödinger equation with step-like initial value. Math. Phys. Anal. Geom., 16: 253–288 (2013)

    Article  MathSciNet  Google Scholar 

  28. Xu, S.W., He, J.S. The rogue wave and breather solution of the Gerdjikov-Ivanov equation. J. Math. Phys., 53(6): 063507 (2012)

    Article  MathSciNet  Google Scholar 

  29. Yang, B., Chen, Y. High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem. Nonlinear Anal-Real., 45: 918–941 (2019)

    Article  MathSciNet  Google Scholar 

  30. Yang, J.K. Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia, 2010

    Book  Google Scholar 

  31. Zhang, G.Q., Yan, Z.Y. The Derivative Nonlinear Schröodinger Equation with Zero/Nonzero Boundary Conditions: Inverse Scattering Transforms and N-Double-Pole Solutions. J. Nonlinear Sci., 30: 3089–3127 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zhang, N., **a, T.C., Fan, E.G. A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line. Acta Math Appl. Sin-E., 34, 493–515: 2018

    Article  MathSciNet  Google Scholar 

  33. Zhang, X, Chen, Y., Inverse scattering transformation for generalized nonlinear Schröodinger equation. Appl. Math. Lett., 98: 306–313 (2019)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Y., Tao, X., Xu, S. The bound-state soliton solutions of the complex modified KdV equation. Inverse Probl., 36: 065003 (2020)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Z.C., Fan, E.G. Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov-Ivanov equation under the zero/nonzero background. Zeitschrift für angewandte Mathematik und Physik, 72: 1–25 (2021)

    Article  MathSciNet  Google Scholar 

  36. Zhu, J. Y., Chen, Y. A new form of general soliton solutions and multiple zeros solutions for a higher-order KaupCNewell equation. J. Math. Phys., 62: 123501 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

The authors declare no conflict of interest.

Additional information

The project is supported by the National Natural Science Foundation of China (No. 12175069 and No. 12235007) and Science and Technology Commission of Shanghai Municipality (No. 21JC1402500 and No. 22DZ2229014), and Natural Science Foundation of Shanghai, China (No. 23ZR1418100).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Jy., Chen, Y. High-order Soliton Matrix for the Third-order Flow Equation of the Gerdjikov-Ivanov Hierarchy Through the Riemann-Hilbert Method. Acta Math. Appl. Sin. Engl. Ser. 40, 358–378 (2024). https://doi.org/10.1007/s10255-024-1109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-024-1109-4

Keywords

2020 MR Subject Classification

Navigation