Log in

Mast cells and angiogenesis in pancreatic ductal adenocarcinoma

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Mast cells are recognized as critical components of the tumor stromal microenvironment in several solid and hematological malignancies, promoting angiogenesis and tumor growth. A correlation between mast cells infiltration, angiogenesis and tumor progression has been reported for pancreatic ductal adenocarcinoma as well. Mast cells contribute to the aggressiveness of the pancreatic ductal carcinoma enhancing the expression of several pro-angiogenic factors such as vascular endothelial growth factor, fibroblast growth factor-2, platelet-derived growth factor and angiopoietin-1 as well as stimulating the pancreatic cancer cells proliferation by IL-13 and tryptase. The disruption of this pro-angiogenic and proliferative stimulation by inhibiting the mast cells migration and degranulation is under investigation as a potential therapeutic approach in pancreatic ductal adenocarcinoma patients. This review will summarize the literature concerning the mast cells infiltration in the pancreatic ductal adenocarcinoma analyzing its role in angiogenesis and tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ribatti D. The development of human mast cells. An historical reappraisal. Exp Cell Res. 2016;342(2):210–5. https://doi.org/10.1016/j.yexcr.2016.03.013.

    Article  PubMed  CAS  Google Scholar 

  2. da Silva EZ, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62(10):698–738. https://doi.org/10.1369/0022155414545334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Vukman KV, Försönits A, Oszvald Á, Tóth EÁ, Buzás EI. Mast cell secretome: soluble and vesicular components. Semin Cell Dev Biol. 2017;67:65–73. https://doi.org/10.1016/j.semcdb.2017.02.002.

    Article  PubMed  CAS  Google Scholar 

  4. Lässer C, Shelke GV, Yeri A, et al. Two distinct extracellular RNA signatures released by a single cell type identified by microarray and next-generation sequencing. RNA Biol. 2017;14(1):58–72. https://doi.org/10.1080/15476286.2016.1249092.

    Article  PubMed  Google Scholar 

  5. Ribatti D, Crivellato E. Mast cells, angiogenesis and cancer. Adv Exp Med Biol. 2011;716:270–88. https://doi.org/10.1007/978-1-4419-9533-9_14.

    Article  PubMed  CAS  Google Scholar 

  6. Kinet J-P. The essential role of mast cells in orchestrating inflammation. Immunol Rev. 2007;217:5–7.

    Article  PubMed  CAS  Google Scholar 

  7. Pittoni P, Piconese S, Tripodo C, Colombo MP. Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene. 2011;30:757–69.

    Article  PubMed  CAS  Google Scholar 

  8. Ribatti D, Crivellato E. Mast cell ontogeny: an historical overview. Immunol Lett. 2014;159:11–4.

    Article  PubMed  CAS  Google Scholar 

  9. Huang B, Lei Z, Zhang G-M, et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood. 2008;112:1269–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–29. https://doi.org/10.1016/j.ccr.2012.01.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Büchler P, Reber HA, Büchler M, et al. Hypoxia-inducible factor 1 regulates vascular endothelial growth factor expression in human pancreatic cancer. Pancreas. 2003;26(1):56–64.

    Article  PubMed  Google Scholar 

  12. Shibaji T, Nagao M, Ikeda N, et al. Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res. 2003;23(6C):4721–7.

    PubMed  CAS  Google Scholar 

  13. Jacobetz MA, Chan DS, Neesse A, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut. 2013;62(1):112–20. https://doi.org/10.1136/gutjnl-2012-302529.

    Article  PubMed  CAS  Google Scholar 

  14. Longo V, Brunetti O, Gnoni A, et al. Angiogenesis in pancreatic ductal adenocarcinoma: a controversial issue. Oncotarget. 2016;7(36):58649–58. https://doi.org/10.18632/oncotarget.10765.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gnoni A, Licchetta A, Scarpa A, et al. Carcinogenesis of pancreatic adenocarcinoma: precursor lesions. Int J Mol Sci. 2013;14(10):19731–62. https://doi.org/10.3390/ijms141019731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Karamitopoulou E, Shoni M, Theoharides TC. Increased number of non-degranulated mast cells in pancreatic ductal adenocarcinoma but not in acute pancreatitis. Int J Immunopathol Pharmacol. 2014;27(2):213–20.

    Article  PubMed  CAS  Google Scholar 

  17. Esposito I, Menicagli M, Funel N, et al. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol. 2004;57(6):630–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Strouch MJ, Cheon EC, Salabat MR, et al. Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res. 2010;16(8):2257–65. https://doi.org/10.1158/1078-0432.CCR-09-1230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chang DZ, Ma Y, Ji B, et al. Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2011;17(22):7015–23. https://doi.org/10.1158/1078-0432.CCR-11-0607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cai SW, Yang SZ, Gao J, et al. Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery. 2011;149(4):576–84. https://doi.org/10.1016/j.surg.2010.10.009.

    Article  PubMed  Google Scholar 

  21. Ma Y, Hwang RF, Logsdon CD, Ullrich SE. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res. 2013;73(13):3927–37. https://doi.org/10.1158/0008-5472.CAN-12-4479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhan HX, Zhou B, Cheng YG, et al. Crosstalk between stromal cells and cancer cells in pancreatic cancer: new insights into stromalbiology. Cancer Lett. 2017;28(392):83–93. https://doi.org/10.1016/j.canlet.2017.01.041.

    Article  CAS  Google Scholar 

  23. Haqq J, Howells LM, Garcea G, Metcalfe MS, Steward WP, Dennison AR. Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. Eur J Cancer. 2014;50(15):2570–82. https://doi.org/10.1016/j.ejca.2014.06.021.

    Article  PubMed  Google Scholar 

  24. Cimpean AM, Tamma R, Ruggieri S, Nico B, Toma A, Ribatti D. Mast cells in breast cancer angiogenesis. Crit Rev Oncol Hematol. 2017;115:23–6. https://doi.org/10.1016/j.critrevonc.2017.04.009.

    Article  PubMed  Google Scholar 

  25. Zudaire E, Martínez A, Garayoa M, et al. Adrenomedullin is a cross-talk molecule that regulates tumor and mast cell function during human carcinogenesis. Am J Pathol. 2006;168(1):280–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Varricchi G, Galdiero MR, Loffredo S, Marone G, et al. Are mast cells MASTers in cancer? Front Immunol. 2017;8(424):2017. https://doi.org/10.3389/fimmu.2017.00424.

    Article  CAS  Google Scholar 

  27. Guo X, Zhai L, Xue R, Shi J, Zeng Q, Gao C. Mast cell tryptase contributes to pancreatic cancer growth through promoting angiogenesis via activation of angiopoietin-1. Int J Mol Sci. 2016;17(6):E834. https://doi.org/10.3390/ijms17060834.

    Article  PubMed  CAS  Google Scholar 

  28. Ammendola M, Sacco R, Sammarco G, et al. Mast cells density positive to tryptase correlates with angiogenesis in pancreatic ductal adenocarcinoma patients having undergone surgery. Gastroenterol Res Pract. 2014. https://doi.org/10.1155/2014/951957.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Silvestris N, Gnoni A, Brunetti AE, et al. Target therapies in pancreatic carcinoma. Curr Med Chem. 2014;21(8):948–65. https://doi.org/10.2174/09298673113209990238.

    Article  PubMed  CAS  Google Scholar 

  30. Kindler HL, Friberg G, Singh DA, et al. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2005;23(31):8033–40. https://doi.org/10.1200/JCO.2005.01.9661.

    Article  PubMed  CAS  Google Scholar 

  31. https://clinicaltrials.gov/ct2/show/NCT02179970?term=amd3100++pancreatic&rank1.

  32. Theoharides TC. Mast cells and pancreatic cancer. N Engl J Med. 2008;358(17):1860–1. https://doi.org/10.1056/NEJMcibr0801519.

    Article  PubMed  CAS  Google Scholar 

  33. Ammendola M, Leporini C, Marech I, et al. Targeting mast cells tryptase in tumor microenvironment: a potential antiangiogenetic strategy. Biomed Res Int. 2014;2014:154702. https://doi.org/10.1155/2014/154702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Francis T, Graf A, Hodges K, et al. Histamine regulation of pancreatitis and pancreatic cancer: a review of recent findings. Hepatobiliary Surg Nutr. 2013;2(4):216–26. https://doi.org/10.3978/j.issn.2304-3881.2013.08.06.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang ZY, Ding Y, Miki T, et al. Nerve growth factor and receptors are significantly affected by histamine stimulus through H1 receptor in pancreatic carcinoma cells. Mol Med Rep. 2010;3(1):103–9. https://doi.org/10.3892/mmr_00000225.

    Article  PubMed  CAS  Google Scholar 

  36. Cricco G, Núñez M, Medina V, et al. Histamine modulates cellular events involved in tumour invasiveness in pancreatic carcinoma cells. Inflamm Res. 2006;55(Suppl 1):S83–4.

    Article  PubMed  CAS  Google Scholar 

  37. Humbert M, Castéran N, Letard S, et al. Masitinib combined with standard gemcitabine chemotherapy: in vitro and in vivo studies in human pancreatic tumour cell lines and ectopic mouse model. PLoS ONE. 2010;5(3):e9430. https://doi.org/10.1371/journal.pone.0009430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Deplanque G, Demarchi M, Hebbar M, et al. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann Oncol. 2015;26(6):1194–200. https://doi.org/10.1093/annonc/mdv133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by “Associazione Italiana Mastocitosi” to DR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Silvestris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longo, V., Tamma, R., Brunetti, O. et al. Mast cells and angiogenesis in pancreatic ductal adenocarcinoma. Clin Exp Med 18, 319–323 (2018). https://doi.org/10.1007/s10238-018-0493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-018-0493-6

Keywords

Navigation