Log in

Seasonal variation of the sea surface salinity in the western tropical North Atlantic on two contrasting years of precipitation in the Amazon Basin

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Motivated by the extreme hydrological events that caused an abnormal reduction and increase in discharge from the Amazon River in 2010 and 2012, respectively, this work investigates the seasonal variability of the sea surface salinity (SSS) in the western tropical Atlantic Ocean over these years. SMOS satellite data and a 1/12\(^{\circ }\) horizontal resolution of the coordinate ocean model (HYCOM) are used to investigate the SSS seasonal variation and assess the balance of mixed layer salinity (MLS) and the mechanisms that rule the SSS seasonal cycle. Two simulations with the same configuration, but with and without tides effects, are employed to investigate the impact of tides on the MLS balance in the region. The results show that the SSS of the Amazon River plume (ARP) was about 1.0 larger and covered a smaller area during the summer and early year boreal autumn of 2012 compared to 2010 in the area located to northwest of the North Brazil Current (NBC) retroflection region, even with the expressive increase in the supply of fresh water from the Amazon River in 2012 compared to 2010. This variability in SSS occurs shortly after the maximum discharge of the Amazon River and is associated with the highest input of freshwater precipitation from the Intertropical Convergence Zone (ITCZ) during the 2010 boreal spring and summer. The impact of tidal swings on the MLS balance in the western region of the tropical Atlantic Ocean occurs mainly in the area near the mouth of the Amazon and Pará Rivers, especially in the northwest portion of the mouth of the Amazon River until approximately Cabo Cassiporé. The forced tidal model shows an increase in MLS over the entire seasonal cycle of about 1.2, as well as a decrease in the contribution of zonal advection to the MLS balance, which reduces the zonal component from the west and increases the meridional component towards the north.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Awo F, Alory G, Da-Allada C et al (2018) Sea surface salinity signature of the tropical Atlantic interannual climatic modes. J Geophysical Res: Oceans 123(10):7420–7437

    ADS  Google Scholar 

  • Balaguru K, Chang P, Saravanan R et al (2012) Ocean barrier layers’ effect on tropical cyclone intensification. Proc Natl Acad Sci 109(36):14343–14347

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Beardsley RC, Candela J, Limeburner R et al (1995) The M2 tide on the Amazon shelf. J Geophysical Res: Oceans 100(C2):2283–2319

    Article  ADS  Google Scholar 

  • Bleck R (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model 4(1):55–88

    Article  ADS  Google Scholar 

  • Boutin J, Martin N, Kolodziejczyk N et al (2016) Interannual anomalies of SMOS sea surface salinity. Remote Sens Environ 180:128–136

    Article  ADS  Google Scholar 

  • Boutin J, Vergely JL, Marchand S et al (2018) New SMOS sea surface salinity with reduced systematic errors and improved variability. Remote Sens Environ 214:115–134

    Article  ADS  Google Scholar 

  • Camara I, Kolodziejczyk N, Mignot J et al (2015) On the seasonal variations of salinity of the tropical Atlantic mixed layer. J Geophysical Res: Oceans 120(6):4441–4462

    ADS  Google Scholar 

  • Chassignet EP, Smith LT, Halliwell GR et al (2003) North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): impact of the vertical coordinate choice, reference pressure, and thermobaricity. J Phys Oceanogr 33(12):2504–2526

    Article  ADS  Google Scholar 

  • Coles VJ, Brooks MT, Hopkins J et al (2013) The pathways and properties of the Amazon River Plume in the tropical North Atlantic Ocean. J Geophysical Res: Oceans 118(12):6894–6913

    ADS  Google Scholar 

  • Da-Allada C, Alory G, Du Penhoat Y et al (2013) Seasonal mixed-layer salinity balance in the tropical Atlantic Ocean: mean state and seasonal cycle. J Geophysical Res: Oceans 118(1):332–345

    ADS  Google Scholar 

  • Da-Allada C, Jouanno J, Gaillard F et al (2017) Importance of the Equatorial Undercurrent on the sea surface salinity in the eastern equatorial Atlantic in boreal spring. J Geophysical Res: Oceans 122(1):521–538

    ADS  Google Scholar 

  • Dagg M, Benner R, Lohrenz S et al (2004) Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes. Cont Shelf Res 24(7–8):833–858

  • Dai A (2017) Dai and Trenberth global river flow and continental discharge dataset. Research data archive at the national center for atmospheric research, computational and information systems laboratory

  • Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3(6):660–687

    Article  ADS  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, et al (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophysical Res: Oceans 109(C12)

  • Dong S, Garzoli SL, Baringer M (2009) An assessment of the seasonal mixed layer salinity budget in the Southern Ocean. J Geophysical Res: Oceans 114(C12)

  • Durand F, Piecuch CG, Becker M et al (2019) Impact of continental freshwater runoff on coastal sea level. Surv Geophys 40(6):1437–1466

    Article  ADS  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Oceanic Tech 19(2):183–204

    Article  Google Scholar 

  • Egbert GD, Bennett AF, Foreman MG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophysical Res: Oceans 99(C12):24821–24852

  • Espinoza JC, Ronchail J, Frappart F et al (2013) The major floods in the Amazonas River and tributaries (Western Amazon basin) during the 1970–2012 period: a focus on the 2012 flood. J Hydrometeorol 14(3):1000–1008

    Article  ADS  Google Scholar 

  • Espinoza JC, Marengo JA, Ronchail J et al (2014) The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient. Environ Res Lett 9(12):124007

    Article  ADS  Google Scholar 

  • Ffield A (2007) Amazon and Orinoco River plumes and NBC rings: bystanders or participants in hurricane events? J Clim 20(2):316–333

    Article  ADS  Google Scholar 

  • Foltz GR, Grodsky SA, Carton JA, et al. (2004) Seasonal salt budget of the northwestern tropical Atlantic ocean along 38 W. J Geophysical Res: Oceans 109(C3)

  • Foltz GR, McPhaden MJ (2008) Seasonal mixed layer salinity balance of the tropical North Atlantic Ocean. J Geophysical Res: Oceans 113(C2)

  • Foltz GR, McPhaden MJ (2010) Interaction between the Atlantic meridional and Niño modes. Geophysical Res Lett 37(18)

  • Foltz GR, McPhaden MJ, Lumpkin R (2012) A strong Atlantic meridional mode event in 2009: the role of mixed layer dynamics. J Clim 25(1):363–380

    Article  ADS  Google Scholar 

  • Fontes RFC, Castro BM, Beardsley RC (2008) Numerical study of circulation on the inner Amazon Shelf. Ocean Dyn 58(3):187–198

    Article  ADS  Google Scholar 

  • Fournier S, Vandemark D, Gaultier L et al (2017) Interannual variation in offshore advection of Amazon-Orinoco plume waters: observations, forcing mechanisms, and impacts. J Geophys Res: Oceans 122(11):8966–8982

    Article  ADS  Google Scholar 

  • Gabioux MG, da Costa VS, de Souza JMAC et al (2013) Modeling the South Atlantic Ocean from medium to high-resolution. Brazilian J Geophys 31(2):229–242

    Article  Google Scholar 

  • Gaillard F, Reynaud T, Thierry V et al (2016) ISAS-13 re-analysis: climatology and inter-annual variability deduced from global ocean observing systems. J Clim 29(4):1305–1323

    Article  ADS  Google Scholar 

  • Gévaudan M, Durand F, Jouanno J (2022) Influence of the Amazon-Orinoco discharge interannual variability on the western tropical Atlantic salinity and temperature. J Geophys Res: Oceans 127(6):e2022JC018495

  • Geyer WR (1995) Tide-induced mixing in the Amazon frontal zone. J Geophys Res: Oceans 100(C2):2341–2353

    Article  Google Scholar 

  • Geyer WR, Beardsley RC, Lentz SJ et al (1996) Physical oceanography of the Amazon Shelf. Cont Shelf Res 16(5–6):575–616

    Article  ADS  Google Scholar 

  • Gloor M, Brienen RJ, Galbraith D et al (2013) Intensification of the amazon hydrological cycle over the last two decades. Geophys Res Lett 40(9):1729–1733

  • Gouveia N, Gherardi D, Aragão L (2019) The role of the Amazon River plume on the intensification of the hydrological cycle. Geophys Res Lett 46(21):12221–12229

    Article  ADS  Google Scholar 

  • Gouveia N, Gherardi D, Wagner F et al (2019) The salinity structure of the Amazon River plume drives spatiotemporal variation of oceanic primary productivity. J Geophys Res Biogeosci 124(1):147–165

    Article  Google Scholar 

  • Grodsky SA, Reul N, Lagerloef G, et al (2012) Haline hurricane wake in the Amazon/Orinoco plume: Aquarius/SACD and SMOS observations. Geophys Res Lett 39(20)

  • Grodsky SA, Carton JA (2018) Delayed and quasi-synchronous response of tropical Atlantic surface salinity to rainfall. J Geophys Res: Oceans 123(8):5971–5985

    Article  ADS  Google Scholar 

  • Grodsky SA, Reverdin G, Carton JA et al (2014) Year-to-year salinity changes in the Amazon plume: contrasting 2011 and 2012 Aquarius/SACD and SMOS satellite data. Remote Sens Environ 140:14–22

    Article  ADS  Google Scholar 

  • Grodsky SA, Carton JA, Bryan FO (2014) A curious local surface salinity maximum in the northwestern tropical Atlantic. J Geophys Res: Oceans 119(1):484–495

    Article  ADS  Google Scholar 

  • Grodsky SA, Johnson BK, Carton JA et al (2015) Interannual Caribbean salinity in satellite data and model simulations. J Geophys Res: Oceans 120(2):1375–1387

    Article  ADS  Google Scholar 

  • Halliwell GR (2004) Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Model 7(3–4):285–322

    Article  ADS  Google Scholar 

  • Hellweger FL, Gordon AL (2002) Tracing Amazon river water into the Caribbean Sea. J Mar Res 60(4):537–549

    Article  Google Scholar 

  • Hormann V, Lumpkin R, Foltz GR (2012) Interannual north equatorial countercurrent variability and its relation to tropical Atlantic climate modes. J Geophys Res: Oceans 117(C4)

  • Horner-Devine AR, Hetland RD, MacDonald DG (2015) Mixing and transport in coastal river plumes. Annu Rev Fluid Mech 47:569–594

    Article  ADS  MathSciNet  Google Scholar 

  • Huffman GJ, Adler RF, Arkin P et al (1997) The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull Am Meteor Soc 78(1):5–20

    Article  ADS  Google Scholar 

  • ** X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables lisan yu. OAFlux Project Tech Rep OA-2008-01 74

  • Kolodziejczyk N, Prigent-Mazella A, Gaillard F (2017) ISAS-15 temperature and salinity gridded fields

  • Korosov A, Counillon F, Johannessen JA (2015) Monitoring the spreading of the Amazon freshwater plume by MODIS, SMOS, Aquarius, and TOPAZ. J Geophys Res: Oceans 120(1):268–283

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32(4):363–403

    Article  ADS  Google Scholar 

  • Lentz SJ (1995) Seasonal variations in the horizontal structure of the Amazon Plume inferred from historical hydrographic data. J Geophys Res: Oceans 100(C2):2391–2400

    Article  Google Scholar 

  • Lewis SL, Brando PM, Phillips OL et al (2011) The 2010 Amazon drought. Science 331(6017):554–554

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lima JAM, Martins RP, Tanajura CAS et al (2013) Design and implementation of the Oceanographic Modeling and Observation Network (REMO) for operational oceanography and ocean forecasting. Brazilian J Geophysics 31(2):210–228

    Article  Google Scholar 

  • Li B, Mehra A, Bayler E (2016) SMOS satellite sea-surface salinity data: impact on upper-ocean modeling. In: 2016 Ocean sciences meeting, AGU

  • Marengo JA, Tomasella J, Alves LM, et al (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38(12)

  • Marengo JA (2006) On the hydrological cycle of the Amazon Basin: a historical review and current state-of-the-art. Revista brasileira de meteorologia 21(3):1–19

    Google Scholar 

  • Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36(3):1033–1050

    Article  Google Scholar 

  • Marengo JA, Alves LM, Soares WR et al (2013) Two contrasting severe seasonal extremes in tropical South America in 2012: flood in Amazonia and drought in northeast Brazil. J Clim 26(22):9137–9154

    Article  ADS  Google Scholar 

  • Masson S, Delecluse P (2001) Influence of the Amazon River runoff on the tropical Atlantic. Phys Chem Earth Part B 26(2):137–142

    Article  ADS  Google Scholar 

  • Mignot J, de Boyer Montégut C, Lazar A, et al (2007) Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas. J Geophys Res: Oceans 112(C10)

  • Molinas E, Vinzon SB, Vilela CdPX et al (2014) Structure and position of the bottom salinity front in the Amazon Estuary. Ocean Dyn 64(11):1583–1599

    Article  ADS  Google Scholar 

  • Molleri GS, Novo EMdM, Kampel M (2010) Space-time variability of the Amazon River plume based on satellite ocean color. Cont Shelf Res 30(3–4):342–352

    Article  ADS  Google Scholar 

  • Nikiema O, Devenon JL, Baklouti M (2007) Numerical modeling of the Amazon River plume. Cont Shelf Res 27(7):873–899

    Article  ADS  Google Scholar 

  • Nittrouer CA, DeMaster DJ (1996) The Amazon shelf setting: tropical, energetic, and influenced by a large river. Cont Shelf Res 16(5–6):553–573

    Article  ADS  Google Scholar 

  • Pailler K, Bourlés B, Gouriou Y (1999) The barrier layer in the western tropical Atlantic Ocean. Geophys Res Lett 26(14):2069–2072

    Article  ADS  Google Scholar 

  • Perry G, Duffy P, Miller N (1996) An extended data set of river discharges for validation of general circulation models. J Geophys Res: Atmospheres 101(D16):21339–21349

    Article  Google Scholar 

  • Prestes YO, da Silva AC, Jeandel C (2018) Amazon water lenses and the influence of the North Brazil Current on the continental shelf. Cont Shelf Res 160:36–48

    Article  ADS  Google Scholar 

  • Richter I, Behera SK, Masumoto Y et al (2013) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6(1):43–47

    Article  ADS  CAS  Google Scholar 

  • Rodrigues RR, Haarsma RJ, Campos EJ et al (2011) The impacts of inter-El Niño variability on the tropical Atlantic and Northeast Brazil climate. J Clim 24(13):3402–3422

    Article  ADS  Google Scholar 

  • Ruault V, Jouanno J, Durand F, et al (2020) Role of the tide on the structure of the Amazon plume: a numerical modeling approach. J Geophys Res: Oceans 125(2):e2019JC015495

  • Satyamurty P, Da Costa CPW, Manzi AO et al (2013) A quick look at the 2012 record flood in the Amazon Basin. Geophys Res Lett 40(7):1396–1401

    Article  ADS  Google Scholar 

  • Schiller RV, Kourafalou VH (2010) Modeling river plume dynamics with the hybrid coordinate ocean model. Ocean Model 33(1–2):101–117

    Article  ADS  Google Scholar 

  • Silva A, Araujo M, Medeiros C et al (2005) Seasonal changes in the mixed and barrier layers in the western equatorial Atlantic. Braz J Oceanogr 53(3–4):83–98

    Article  Google Scholar 

  • Sprintall J, Tomczak M (1992) Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research: Oceans 97(C5):7305–7316

    Article  Google Scholar 

  • Subramaniam A, Yager P, Carpenter E et al (2008) Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc Natl Acad Sci 105(30):10460–10465

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanajura CA, Mignac D, de Santana AN et al (2020) Observing system experiments over the Atlantic Ocean with the REMO ocean data assimilation system (RODAS) into HYCOM. Ocean Dyn 70(1):115–138

    Article  ADS  Google Scholar 

  • Tzortzi E, Josey S, Srokosz M et al (2013) Tropical Atlantic salinity variability: new insights from SMOS. Geophys Res Lett 40(10):2143–2147

    Article  ADS  Google Scholar 

  • Varona H, Veleda D, Silva M et al (2019) Amazon River plume influence on Western Tropical Atlantic dynamic variability. Dyn Atmos Oceans 85:1–15

  • Wisser D, Fekete BM, Vörösmarty C et al (2010) Reconstructing 20th century global hydrography: a contribution to the global terrestrial network-hydrology (GTN-H). Hydrol Earth Syst Sci 14(1):1–24

  • **e SP, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. Earth’s Climate: The Ocean-Atmosphere Interaction. Geophys Monogr 147:121–142

    ADS  Google Scholar 

  • Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34(2):249–264

    Article  Google Scholar 

  • Yu L (2011) A global relationship between the ocean water cycle and near-surface salinity. Journal of Geophysical Research: Oceans 116(C10)

  • Zeng N, Yoon JH, Marengo JA et al (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3(1):014002

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq grant 141974/2016-8) of the Brazilian Ministry of Science, Technology and Innovation (MCTI). We would like to thank the Oceanographic Modeling and Observation Network (REMO) research group for the support in the model integrations and the MCTI/FINEP/CT-Infra 01/2013 project 0761/13 for the computational infrastructure employed here. We also thank Dr. Alessandro Aguiar for proofreading the English in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atila Matias.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Ricardo de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matias, A., Tanajura, C., Pereira, J. et al. Seasonal variation of the sea surface salinity in the western tropical North Atlantic on two contrasting years of precipitation in the Amazon Basin. Ocean Dynamics 74, 269–285 (2024). https://doi.org/10.1007/s10236-024-01602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-024-01602-1

Keywords

Navigation