Log in

Low-Rank Perturbation of Regular Matrix Pencils with Symmetry Structures

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The generic change of the Weierstraß canonical form of regular complex structured matrix pencils under generic structure-preserving additive low-rank perturbations is studied. Several different symmetry structures are considered, and it is shown that for most of the structures, the generic change in the eigenvalues is analogous to the case of generic perturbations that ignore the structure. However, for some odd/even and palindromic structures, there is a different behavior for the eigenvalues 0 and \(\infty \), respectively, \(+1\) and \(-1\). The differences arise in those cases where the parity of the partial multiplicities in the perturbed matrix pencil provided by the generic behavior in the general structure-ignoring case is not in accordance with the restrictions imposed by the structure. The new results extend results for the rank-1 and rank-2 cases that were obtained in Batzke (Linear Algebra Appl 458:638–670, 2014, Oper Matrices 10:83–112, 2016) for the case of special structure-preserving perturbations. As the main tool, we use decompositions of matrix pencils with symmetry structure into sums of rank-1 matrix pencils, as those allow a parametrization of the set of matrix pencils with a given symmetry structure and a given rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Abou Hamad, B. Israels, P.A. Rikvold, and S.V. Poroseva. Spectral matrix methods for partitioning power grids: Applications to the Italian and Floridian high-voltage networks. In Computer Simulation Studies in Condensed-Matter Physics XXIII (CSP10), volume 4, Physics Procedia, 2010, pp. 125–129.

  2. R. Albert, I. Albert, and G.L. Nakarado. Structural vulnerability of the north american power grid. Phys. Rev. E, 69 (2004), 025103.

    Article  Google Scholar 

  3. S. Barnett. Matrices: Methods and Applications. Oxford, New York, 1990.

  4. L. Batzke. Generic rank-one perturbations of structured regular matrix pencils. Linear Algebra Appl., 458 (2014), 638–670.

    Article  MathSciNet  Google Scholar 

  5. L. Batzke. Generic Low-Rank Perturbations of Structured Regular Matrix Pencils and Structured Matrices. PhD thesis, TU Berlin, Berlin, Germany, 2015.

  6. L. Batzke. Generic rank-two perturbations of structured regular matrix pencils. Oper. Matrices, 10 (2016), 83–112 .

    Article  MathSciNet  Google Scholar 

  7. L. Batzke, C. Mehl, A. C. M. Ran, and L. Rodman. Generic rank-k perturbations of structured matrices. Oper. Theory Adv. Appl. 225 (2016), 27–48 .

    MathSciNet  MATH  Google Scholar 

  8. K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems in Differential Algebraic Equations. SIAM Publications, Philadelphia, PA, 2nd edition, 1996.

    MATH  Google Scholar 

  9. F. De Terán. A geometric description of the set of palindromic and alternating matrix pencils with bounded rank. SIAM J. Matrix Anal. Appl., 39 (2018), 1116–1134.

    Article  MathSciNet  Google Scholar 

  10. F. De Terán, A. Dmytryshyn, and F. M. Dopico. Generic symmetric matrix polynomials with bounded rank and fixed odd grade. SIAM J. Matrix Anal. Appl., 41 (2020), 1033–1058.

    Article  MathSciNet  Google Scholar 

  11. F. De Terán and F. M. Dopico. Low rank perturbation of Kronecker structures without full rank. SIAM J. Matrix Anal. Appl., 29 (2007), 496–529.

    Article  MathSciNet  Google Scholar 

  12. F. De Terán and F. M. Dopico. Low rank perturbation of regular matrix polynomials. Linear Algebra. Appl., 430 (2009), 579–586.

    Article  MathSciNet  Google Scholar 

  13. F. De Terán and F. M. Dopico. Generic change of the partial multiplicities of regular matrix pencils under low rank perturbations. SIAM J. Matrix Anal. Appl., 37 (2016), 823–835.

    Article  MathSciNet  Google Scholar 

  14. F. De Terán, F. M. Dopico, and J. Moro. Low rank perturbation of Weierstrass structure. SIAM J. Matrix Anal. Appl., 30 (2008), 538–547.

    Article  MathSciNet  Google Scholar 

  15. A. Dmytryshyn and F. M. Dopico. Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade. Linear Algebra Appl., 536 (2018), 1–18.

    Article  MathSciNet  Google Scholar 

  16. A. Dmytryshyn, S. Johansson, B. Kågström, and P. Van Dooren. Geometry of matrix polynomial spaces. Found. Comput. Math., 20 (2020), 423–450.

    Article  MathSciNet  Google Scholar 

  17. A. Dmytryshyn and B. Kågström. Orbit closure hierarchies for skew-symmetric matrix pencils. SIAM J. Matrix Anal. Appl., 35 (2014), 1429–1443.

    Article  MathSciNet  Google Scholar 

  18. A. Dmytryshyn, B. Kågström, and V. V. Sergeichuk. Skew-symmetric matrix pencils: Codimension counts and the solution of a pair of matrix equations. Linear Algebra Appl., 438 (2013), 3375–3396.

    Article  MathSciNet  Google Scholar 

  19. N.H. Du, V.H. Linh, and V. Mehrmann. Robust stability of differential-algebraic equations. In Differential Algebraic Equation Forum, Surveys in Differential-Algebraic Equations I, pages 63–96, Springer Verlag, Heidelberg, 2013.

  20. A. Edelman, E. Elmroth, and B. Kågström. A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm. SIAM J. Matrix Anal. Appl., 20 (1999), 667–699.

  21. J. H. Fourie, G. J. Groenewald, D. B. Janse van Rensburg, and A. C. M. Ran. Rank one perturbations of H-positive real matrices. Linear Algebra Appl., 439 (2013), 653–674.

    Article  MathSciNet  Google Scholar 

  22. F.R. Gantmacher. The Theory of Matrices, volume 1. Chelsea, New York, 1959.

    MATH  Google Scholar 

  23. I. Gohberg, P. Lancaster, and L. Rodman. Indefinite Linear Algebra and Applications. Birkhäuser, Basel, 2005.

    MATH  Google Scholar 

  24. N. Gräbner, V. Mehrmann, S. Quraishi, C. Schröder, and U. von Wagner. Numerical methods for parametric model reduction in the simulation of disc brake squeal. Z. Angew. Math. Mech., 96 (2016), 1388–1405.

    Article  Google Scholar 

  25. P. Hamann and V. Mehrmann. Numerical solution of hybrid differential-algebraic equations. Comp. Meth. Appl. Mech. Eng., 197 (2008), 693–705.

    Article  MathSciNet  Google Scholar 

  26. L. Hörmander and A. Melin. A remark on perturbations of compact operators. Math. Scand., 75 (1994), 255–262.

    Article  MathSciNet  Google Scholar 

  27. D. B. Janse van Rensburg. Structured matrices in indefinite inner product spaces: simple forms, invariant subspaces and rank-one perturbations. PhD thesis, North-West University, Potchefstroom, South Africa, 2012.

  28. P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solution. Zürich: European Mathematical Society Publishing House, 2006.

    Book  Google Scholar 

  29. D. Liberzon. Switching in Systems and Control. Birkhäuser, Boston, 2003.

    Book  Google Scholar 

  30. D. Liberzon and S. Trenn. Switched nonlinear differential algebraic equations: Solution theory, Lyapunov functions, and stability. Automatica, 48–5 (2012), 954–963.

    Article  MathSciNet  Google Scholar 

  31. D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl., 28 (2006), 1029–1051.

    Article  MathSciNet  Google Scholar 

  32. C. Mehl. Anti-triangular and anti-m-Hessenberg forms for Hermitian matrices and pencils. Linear Algebra Appl., 317 (2000), 143–176.

    Article  MathSciNet  Google Scholar 

  33. C. Mehl, V. Mehrmann, A. C. M. Ran, and L. Rodman. Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations. Linear Algebra Appl., 435 (2011), 687–716.

    Article  MathSciNet  Google Scholar 

  34. C. Mehl, V. Mehrmann, A. C. M. Ran, and L. Rodman. Perturbation theory of selfadjoint matrices and sign characteristics under generic structured rank one perturbations. Linear Algebra Appl., 436 (2012), 4027–4042.

    Article  MathSciNet  Google Scholar 

  35. C. Mehl, V. Mehrmann, A. C. M. Ran, and L. Rodman. Jordan forms of real and complex matrices under rank one perturbations. Oper. Matrices, 7 (2013), 381–398.

    Article  MathSciNet  Google Scholar 

  36. C. Mehl, V. Mehrmann, A. C. M. Ran, and L. Rodman. Eigenvalue perturbation theory of symplectic, orthogonal, and unitary matrices under generic structured rank one perturbations. BIT, 54 (2014), 219–255.

    Article  MathSciNet  Google Scholar 

  37. C. Mehl, V. Mehrmann, A. C. M. Ran, and L. Rodman. Eigenvalue perturbation theory of structured real matrices under generic structured rank-one perturbations. Linear and Multilinear Algebra, 64 (2016), 527–556.

    Article  MathSciNet  Google Scholar 

  38. C. Mehl and A. C. M. Ran. Low rank perturbation of quaternion matrices. Electron. J. Linear Algebra, 32 (2017), 514–530.

    Article  MathSciNet  Google Scholar 

  39. V. Mehrmann, V. Noferini, F. Tisseur, and H. Xu. On the sign characteristics of hermitian matrix polynomials. Linear Algebra Appl., 511 (2016), 328–364.

    Article  MathSciNet  Google Scholar 

  40. V. Mehrmann and L. Wunderlich. Hybrid systems of differential-algebraic equations – analysis and numerical solution. J. Process Control, 19 (2009), 1218–1228.

    Article  Google Scholar 

  41. J. Moro and F. M. Dopico. Low rank perturbation of Jordan structure. SIAM J. Matrix Anal. Appl., 25 (2003), 495–506.

    Article  MathSciNet  Google Scholar 

  42. M.C. Petri. National power grid simulation capability: Needs and issues. Technical report, Argonne National Laboratory, Energy Sciences and Engineering Directorate, U.S. Department of Homeland Security, 2008.

    Google Scholar 

  43. S.V. Savchenko. Typical changes in spectral properties under perturbations by a rank-one operator. Mat. Zametki, 74:590–602, 2003. (Russian). Translation in Mathematical Notes. 74 (2003), 557–568.

  44. S.V. Savchenko. On the change in the spectral properties of a matrix under a perturbation of a sufficiently low rank. Funktsional. Anal. i Prilozhen, 38 (85–88), 2004. (Russian). Translation in Funct. Anal. Appl. 38 (2004), 69–71.

  45. R. C. Thompson. Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl., 147 (1991), 323–371.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Fernando De Terán has been supported by the Ministerio de Economía y Competitividad of Spain through Grant MTM2015-65798-P, by the Ministerio de Ciencia, Innovación y Universidades of Spain through Grant MTM2017–90682–REDT, and by the Ministerio de Educación, Cultura y Deportes of Spain through Grant PRX16/00128 Programa de estancias de movilidad de profesores e investigadores en centros de enseñanza superior e investigación “Salvador de Madariaga.” The work of Volker Mehrmann has been supported by Einstein Foundation Berlin through project OT3 within the Einstein Center ECMath. The authors thank two anonymous referees for their comments that allowed to improve the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando De Terán.

Additional information

Communicated by Alan Edelman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Terán, F., Mehl, C. & Mehrmann, V. Low-Rank Perturbation of Regular Matrix Pencils with Symmetry Structures. Found Comput Math 22, 257–311 (2022). https://doi.org/10.1007/s10208-021-09500-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-021-09500-4

Keywords

Mathematics Subject Classification

Navigation