Log in

Inhibition of matrix metalloproteinases and inducible nitric oxide synthase by andrographolide in human osteoarthritic chondrocytes

  • Original Article
  • Published:
Modern Rheumatology

Abstract

Objective

The aim of this study was to investigate the effects of andrographolide on matrix metalloproteinases (MMP) 1, 3, and 13 and inducible nitric oxide synthase (iNOS) in human articular chondrocytes from osteoarthritic cartilage.

Methods

Passaged chondrocytes were pretreated with or without andrographolide for 2 h, followed by coincubation with interleukin-1 beta (IL-1β) 1 ng/ml for 24 h. Expression levels of MMP-1, 3, and 13, tissue inhibitor of metalloproteinase-1 (TIMP-1), and iNOS were evaluated using real-time-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting. Nitric oxide (NO) was analyzed using the Griess reaction assay. Involvement of nuclear factor kappa B (NF-κB) was assessed by Western blotting, transient transfection, and luciferase reporter assay.

Results

Andrographolide tested in these in vitro studies was found be an effective antiarthritic agent, as evidenced by potent inhibition of MMP-1, 3, and 13 and iNOS expression, as well as upregulation of TIMP-1 in IL-1β-stimulated human articular chondrocytes (p < 0.05). The mechanism of andrographolide’s inhibitory effects was mediated by attenuating the activation of NF-κB in human chondrocytes in the presence of IL-1β.

Conclusions

Andrographolide was a potent inhibitor of the production of inflammatory and catabolic mediators by chondrocytes, suggesting that this natural compound may merit consideration as a therapeutic agent for treating and preventing osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OA:

Osteoarthritis

IL-1β:

Interleukin-1 beta

MMPs:

Matrix metalloproteinases

TIMP-1:

Tissue inhibitor of metalloproteinases-1

iNOS:

Inducible nitric oxide synthase

NO:

Nitric oxide

NF-κB:

Nuclear factor kappa B

IκB:

Inhibitory kappa B

IKK-β:

Inhibitory kappa B kinase beta

References

  1. Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213:626–34.

    Article  PubMed  CAS  Google Scholar 

  2. Lee R, Kean WF. Obesity and knee osteoarthritis. Inflammopharmacology. 2012.

  3. Loeser RF. Aging and osteoarthritis. Curr Opin Rheumatol. 2011;23:492–6.

    Article  PubMed  CAS  Google Scholar 

  4. Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthr Res Ther 2009;11.

  5. Chevalier X, Conrozier T, Richette P. Desperately looking for the right target in osteoarthritis: the anti-IL-1 strategy. Arthr Res Ther. 2011;13:124.

    Article  Google Scholar 

  6. Dahlberg L, Billinghurst RC, Manner P, Nelson F, Webb G, Ionescu M, et al. Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1 (matrix metalloproteinase 1). Arthr Rheum. 2000;43:673–82.

    Article  CAS  Google Scholar 

  7. Smith GN Jr. The role of collagenolytic matrix metalloproteinases in the loss of articular cartilage in osteoarthritis. Front Biosci. 2006;11:3081–95.

    Article  PubMed  CAS  Google Scholar 

  8. Poole AR. Biochemical/immunochemical biomarkers of osteoarthritis: utility for prediction of incident or progressive osteoarthritis. Rheum Dis Clin North Am. 2003;29:803–18.

    Article  PubMed  Google Scholar 

  9. Abramson SB. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthr Res Ther. 2008;10(Suppl 2):S2.

    Article  Google Scholar 

  10. Nathan C. Inducible nitric oxide synthase: what difference does it make? J Clin Invest. 1997;100:2417–23.

    Article  PubMed  CAS  Google Scholar 

  11. Amin AR, Abramson SB. The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol. 1998;10:263–8.

    Article  PubMed  CAS  Google Scholar 

  12. **e QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994;269:4705–8.

    PubMed  CAS  Google Scholar 

  13. Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets. 2010;11:599–613.

    Article  PubMed  CAS  Google Scholar 

  14. Dai GF, Zhao J, Jiang ZW, Zhu LP, Xu HW, Ma WY, et al. Anti-inflammatory effect of novel andrographolide derivatives through inhibition of NO and PGE(2) production. Int Immunopharmacol 2011; 11(12):2144–2149.

    Google Scholar 

  15. Jiang X, Yu P, Jiang J, Zhang Z, Wang Z, Yang Z, et al. Synthesis and evaluation of antibacterial activities of andrographolide analogues. Eur J Med Chem. 2009;44:2936–43.

    Article  PubMed  CAS  Google Scholar 

  16. Lee YC, Lin HH, Hsu CH, Wang CJ, Chiang TA, Chen JH. Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3 K/Akt signaling pathway. Eur J Pharmacol. 2010;632:23–32.

    Article  PubMed  CAS  Google Scholar 

  17. Shi MD, Lin HH, Chiang TA, Tsai LY, Tsai SM, Lee YC, et al. Andrographolide could inhibit human colorectal carcinoma Lovo cells migration and invasion via down-regulation of MMP-7 expression. Chem Biol Interact. 2009;180:344–52.

    Article  PubMed  CAS  Google Scholar 

  18. Burgos RA, Hancke JL, Bertoglio JC, Aguirre V, Arriagada S, Calvo M, et al. Efficacy of an Andrographis paniculata composition for the relief of rheumatoid arthritis symptoms: a prospective randomized placebo-controlled trial. Clin Rheumatol. 2009;28:931–46.

    Article  PubMed  CAS  Google Scholar 

  19. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthr Rheum. 1986;29:1039–49.

    Article  CAS  Google Scholar 

  20. Altman R, Alarcon G, Appelrouth D, Bloch D, Borenstein D, Brandt K, et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthr Rheum. 1991;34:505–14.

    Article  CAS  Google Scholar 

  21. Lieberthal W, Triaca V, Koh JS, Pagano PJ, Levine JS. Role of superoxide in apoptosis induced by growth factor withdrawal. Am J Physiol. 1998;275:F691–702.

    PubMed  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  23. Palmieri B, Lodi D, Capone S. Osteoarthritis and degenerative joint disease: local treatment options update. Acta Biomed. 2010;81:94–100.

    PubMed  CAS  Google Scholar 

  24. Malemud CJ. Anticytokine therapy for osteoarthritis: evidence to date. Drugs Aging. 2010;27:95–115.

    Article  PubMed  CAS  Google Scholar 

  25. Aigner T, Sachse A, Gebhard PM, Roach HI. Osteoarthritis: pathobiology-targets and ways for therapeutic intervention. Adv Drug Deliv Rev. 2006;58:128–49.

    Article  PubMed  CAS  Google Scholar 

  26. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.

    Article  PubMed  CAS  Google Scholar 

  27. Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002;3:207–14.

    Article  PubMed  CAS  Google Scholar 

  28. Murphy G, Knauper V, Atkinson S, Butler G, English W, Hutton M, et al. Matrix metalloproteinases in arthritic disease. Arthr Res. 2002;4(Suppl 3):S39–49.

    Article  Google Scholar 

  29. Takaishi H, Kimura T, Dalal S, Okada Y, D’Armiento J. Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr Pharm Biotechnol. 2008;9:47–54.

    Article  PubMed  CAS  Google Scholar 

  30. Pratheeshkumar P, Kuttan G. Andrographolide inhibits human umbilical vein endothelial cell invasion and migration by regulating MMP-2 and MMP-9 during angiogenesis. J Environ Pathol Toxicol Oncol. 2011;30:33–41.

    Article  PubMed  CAS  Google Scholar 

  31. Lee KC, Chang HH, Chung YH, Lee TY. Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-kappaB pathway. J Ethnopharmacol. 2011;135:678–84.

    Article  PubMed  CAS  Google Scholar 

  32. Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil. 2003;11:747–55.

    Article  PubMed  CAS  Google Scholar 

  33. Pelletier JP, Jovanovic D, Fernandes JC, Manning P, Connor JR, Currie MG, et al. Reduced progression of experimental osteoarthritis in vivo by selective inhibition of inducible nitric oxide synthase. Arthr Rheum. 1998;41:1275–86.

    Article  CAS  Google Scholar 

  34. Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthr Res Ther. 2003;5:94–103.

    Article  CAS  Google Scholar 

  35. Malfait AM, Liu RQ, Ijiri K, Komiya S, Tortorella MD. Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem. 2002;277:22201–8.

    Article  PubMed  CAS  Google Scholar 

  36. Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthr Res. 2002;4:157–64.

    Article  CAS  Google Scholar 

  37. Tian B, Brasier AR. Identification of a nuclear factor kappa B-dependent gene network. Recent Prog Horm Res. 2003;58:95–130.

    Article  PubMed  CAS  Google Scholar 

  38. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18:2195–224.

    Article  PubMed  CAS  Google Scholar 

  39. Lee WR, Chung CL, Hsiao CJ, Chou YC, Hsueh PJ, Yang PC, et al. Suppression of matrix metalloproteinase-9 expression by andrographolide in human monocytic THP-1 cells via inhibition of NF-kappaB activation. Phytomedicine 2012.

Download references

Acknowledgments

This study was supported by a grant from the Natural Science Foundation of China (30901531), Natural Science Grants of Zhejiang Province (Y207216) and National Natural Science Foundation of China (81071492).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ang-hua Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10165_2012_807_MOESM1_ESM.tif

Effects of andrographolide on interleukin (IL)-1β-induced COL2A1, COL9A1, ACAN, ADAMTS-4, 5, and TIMP-3 gene expression. Chondrocytes were pretreated with various andrographolide concentrations for 2 h, followed by stimulation with IL-1β (1 ng/ml) for 24 h. Relative gene expressions were determined by real-time quantitative PCR. Data are expressed as mean ± standard deviatiion (SD). *p < 0.05 andrographolide treated chondrocytes compared with chondrocytes stimulated with IL-1β alone. (TIFF 222 kb)

About this article

Cite this article

Ding, Qh., Ji, Xw., Cheng, Y. et al. Inhibition of matrix metalloproteinases and inducible nitric oxide synthase by andrographolide in human osteoarthritic chondrocytes. Mod Rheumatol 23, 1124–1132 (2013). https://doi.org/10.1007/s10165-012-0807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10165-012-0807-6

Keywords

Navigation