Log in

Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

ABSTRACT

Overexposure to loud noise is known to lead to deficits in auditory sensitivity and perception. We studied the effects of noise exposure on sensorimotor behaviors of larval (5–7 days post-fertilization) zebrafish (Danio rerio), particularly the auditory-evoked startle response and hearing sensitivity to acoustic startle stimuli. We observed a temporary 10–15 dB decrease in startle response threshold after 18 h of flat-spectrum noise exposure at 20 dB re·1 ms−2. Larval zebrafish also exhibited decreased habituation to startle-inducing stimuli following noise exposure. The noise-induced sensitization was not due to changes in absolute hearing thresholds, but was specific to the auditory-evoked escape responses. The observed noise-induced sensitization was disrupted by AMPA receptor blockade using DNQX, but not NMDA receptor blockade. Together, these experiments suggest a complex effect of noise exposure on the neural circuits mediating auditory-evoked behaviors in larval zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  • Amoser S, Ladich F (2003) Diversity in noise-induced temporary hearing loss in otophysine fishes. J Acoust Soc Am 113(4):2170–2179

    Article  PubMed  Google Scholar 

  • Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA (2015) Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 20(8):974–985

    Article  CAS  PubMed  Google Scholar 

  • Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A et al (2008) Non-associative learning in larval zebrafish. Neuropsychopharmacol 33(5):1206–1215

    Article  CAS  Google Scholar 

  • Bhandiwad AA, Zeddies DG, Raible DW, Rubel EW, Sisneros JA (2013) Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 216(18):3504–3513

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhandiwad AA, Sisneros JA (2016) Revisiting psychoacoustic methods for the assessment of fish hearing. In: J Sisneros (ed) Fish hearing and bioacoustics. Adv Exp Med Biol 877, Springer, Cham, pp 157–184

  • Blumenthal TD (1997) Prepulse inhibition decreases as startle reactivity habituates. Psychophysiol 34(4):446–450

    Article  CAS  Google Scholar 

  • Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27:4984–4994

    Article  CAS  PubMed  Google Scholar 

  • Carder HM, Miller JD (1972) Temporary threshold shifts from prolonged exposure to noise. J Speech Lang Hear Res 15(3):603–623

    Article  CAS  Google Scholar 

  • Casper BM, Smith ME, Halvorsen MB, Sun H, Carlson TJ et al (2013) Effects of exposure to pile driving sounds on fish inner ear tissues. Comp Biochem Physiol A Mol Integr Physiol 166(2):352–360

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Lee C, Sandridge SA, Butler HM, Manzoor NF et al (2013) Behavioral evidence for possible simultaneous induction of hyperacusis and tinnitus following intense sound exposure. J Assoc Res Otolaryngol 14(3):413–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis M (1974) Sensitization of the rat startle response by noise. J Comp Physiol Psych 87(3):571–581

    Article  CAS  Google Scholar 

  • Davis M, Gendelman DS, Tischler MD, Gendelman PM (1982) A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2(6):791–805

    Article  CAS  PubMed  Google Scholar 

  • Davis M (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61(8):741

    Article  PubMed  Google Scholar 

  • Davis R (2017) Long-term noise exposures: a brief review. Hear Res 349:31–33

    Article  PubMed  Google Scholar 

  • Dinh CT, Goncalves S, Bas E, Van De Water TR, Zine A (2016) Molecular regulation of auditory hair cell death and approaches to protect sensory receptory cells and/or stimulate repair following acoustic trauma. Front Cell Neurosci 9:96

    Google Scholar 

  • Eggermont JJ (2015) Animal models of spontaneous activity in the healthy and impaired auditory system. Front Neur Circuit 9:19

    Google Scholar 

  • Faber DS, Korn H (1989) Electrical field effects: their relevance in central neural networks. Physiol Rev 69(3):821–863

    Article  CAS  PubMed  Google Scholar 

  • Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacol 156:216–224

    Article  CAS  Google Scholar 

  • Finneran JJ (2012) Auditory effects of underwater noise in odontocetes. In: The effects of noise on aquatic life. Springer, New York, pp 197–202

  • Griffiths B, Schoonheim PJ, Ziv L, Voelker L, Baier H et al (2012) A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci 6:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groves PM, Thompson RF (1970) Habituation: a dual-process theory. Psychol Rev 77(5):419

    Article  CAS  PubMed  Google Scholar 

  • Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111(3):552–564

    Article  PubMed  Google Scholar 

  • Honore T, Davies SN, Drejer J, Fletcher EJ, Jacobsen P et al (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241(4866):701–703

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Tanimoto M, Oda Y (2013) The role of ear stone size in hair cell acoustic sensory transduction. Sci Rep 3:2114

    Article  PubMed  PubMed Central  Google Scholar 

  • Korn H, Faber DS (2005) The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Koyama M, Minale F, Shum J et al (2016) A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right. eLife 5:e16808

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong ACY (2017) Cellular mechanisms of noise-induced hearing loss. Hear Res 349:129–137

    Article  CAS  PubMed  Google Scholar 

  • Krase W, Koch M, Schnitzler HU (1993) Glutamate antagonists in the reticular formation reduce the acoustic startle response. Neuroreport 4(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Li L, Du Y, Li N, Wu X, Wu Y (2009) Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neurosci Biobehav Rev 33(8):1157–1167

    Article  PubMed  Google Scholar 

  • Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31(3):801–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsden KC, Granato M (2015) Vivo Ca 2+ imaging reveals that decreased dendritic excitability drives startle habituation. Cell Rep 13(9):1733–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnick W (1976). Human asymptotic threshold shift. Effects of noise on hearing. pp 277–289

  • Melnick W (1991) Human temporary threshold shift (TTS) and damage risk. J Acoust Soc Am 90(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Mirjany M, Faber DS (2011) Characteristics of the anterior lateral line nerve input to the Mauthner cell. J Exp Biol 214(20):3368–3377

    Article  PubMed  Google Scholar 

  • Monroe JD, Rajadinakaran G, Smith ME (2015) Sensory hair cell death and regeneration in fishes. Front Cell Neurosci 9:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olt J, Johnson SL, Marcotti W (2014) In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of develo** and adult zebrafish. J Phys 592(10):2041–2058

    CAS  Google Scholar 

  • Pickles JO (2012) An introduction to the physiology of hearing, 4th edn. Emerald Group Publishing, Bingley

    Google Scholar 

  • Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions. Brain Behav Evol 41(1):14–38

    Article  CAS  PubMed  Google Scholar 

  • Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Purser J, Radford AN (2011) Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PLoS One 6(2):e17478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AC, Reichl J, Song MY, Dearinger AD Moridzadeh N et al (2011) Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 6(12):e29132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101

    Article  CAS  Google Scholar 

  • Ryals BM, Dooling RJ, Westbrook E, Dent ML, MacKenzie A et al (1999) Avian species differences in susceptibility to noise exposure. Hear Res 131:71–88

    Article  CAS  PubMed  Google Scholar 

  • Ryan AF, Kujawa SG, Hammill T, LePrell C, Kil J (2016) Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol Neurotol 37(8):e271–e275

    Article  PubMed  PubMed Central  Google Scholar 

  • Rybalko N, Bures Z, Burianova J, Popelar J, Grecova J et al (2011) Noise exposure during early development influences the acoustic startle reflex in adult rats. Physiol Behav 102(5):453–458

    Article  CAS  PubMed  Google Scholar 

  • Scholik AR, Yan HY (2001) Effects of underwater noise on auditory sensitivity of a cyprinid fish. Hear Res 152(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Schuck JB, Smith ME (2009) Cell proliferation follows acoustically-induced hair cell bundle loss in the zebrafish saccule. Hear Res 253:67–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebe JY, Cho S, Sheets L, Rutherford MA, von Gersdorff H, Raible DW (2017) Ca2+-permeable AMPARs mediate glutamatergic transmission and excitotoxic damage at the hair cell ribbon synapse. J Neurosci 37(25):6162–6175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ME (2012). Predicting hearing loss in fishes. In The effects of noise on aquatic life. Springer New York, pp 259–262

  • Smith ME, Coffin AB, Miller DL, Popper AN (2006) Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure. J Exp Biol 209(21):4193–4202

    Article  PubMed  Google Scholar 

  • Smith ME, Kane AS, Popper AN (2004) Noise-induced stress response and hearing loss in goldfish (Carassius auratus). J Exp Biol 207(3):427–435

    Article  PubMed  Google Scholar 

  • Smith ME, Schuck JB, Gilley RR, Rogers BD (2011) Structural and functional effects of acoustic exposure in goldfish: evidence for tonotopy in the teleost saccule. BMC Neurosci 12(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Lu J, Stolzberg DJ, Gray L, Deng A, Lobarinas E, Salvi RJ (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334

    Article  CAS  PubMed  Google Scholar 

  • Suta D, Rybalko N, Shen D, Popelar J, Poon PWF et al (2015) Frequency discrimination in rats exposed to noise as juveniles. Physiol Behav 144:60–65

    Article  CAS  PubMed  Google Scholar 

  • Tabor KM, Bergeron SA, Horstick EJ, Jordan DC, Aho V, Porkka-Heiskanen T et al (2014) Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. J Neurophysiol 112(4):834–844

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapani JG, Nicolson T (2011) Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral line organ. J Neurosci 31:1614–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe PM, Sun H, Wang K, Asunscion JD, Wang Q, Chen CW et al (2013) Aminoglycoside-induced hair cell death of inner ear organs causes functional deficits in the adult zebrafish (Danio rerio). PLoS One 8:e58755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanwalleghem G, Heap LA, Scott EK (2017) A profile of auditory-responsive neurons in the larval zebrafish brain. J Comp Neurol 525(14):3031–3043

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ding D, Salvi RJ (2002) Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear Res 168(1):238–249

    Article  PubMed  Google Scholar 

  • Weiss SA, Preuss T, Faber DS (2008) A role of electrical inhibition in sensorimotor integration. Proc Natl Acad Sci 105(46):18047–18052

    Article  CAS  PubMed  Google Scholar 

  • Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio), 4th edn. Univ. of Oregon Press, Eugene

    Google Scholar 

  • Whitfield TT, Riley BB, Chiang MY, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 223:427–458

    Article  PubMed  Google Scholar 

  • Wolman MA, Jain RA, Liss L, Granato M (2011) Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci 108(37):15468–15473

    Article  PubMed  Google Scholar 

  • Yang G, Lobarinas F, Zhang L, Turner J, Stolzberg D, Salvi R, Sun W (2007) Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res 226:244–253

  • Yokogawa T, Hannan MC, Burgess HA (2012) The dorsal raphe modulates sensory responsiveness during arousal in zebrafish. J Neurosci 32(43):15205–15215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We would like to thank Dr. Allison Coffin and Dr. David Glanzman for advice and Tor Linbo and Dr. Dale Hailey for help with training.

Funding

This work was supported by the University of Washington Auditory Neuroscience training grant [NIH 2T32DC005361-11] to AAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin A. Bhandiwad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandiwad, A.A., Raible, D.W., Rubel, E.W. et al. Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish. JARO 19, 741–752 (2018). https://doi.org/10.1007/s10162-018-00685-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-018-00685-0

KEYWORDS

Navigation