Log in

Ratio of serum creatinine to cystatin C is related to leg strength in predialysis CKD patients

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background and objectives

Chronic kidney disease (CKD) patients have lower levels of physical function. Especially, leg strength is important for daily living and preventing falls. However, physical function screenings are difficult to perform at clinical sites. To find clinically useful method to evaluate physical function in predialysis CKD patients, we tried to evaluate the relationship between the ratio of serum creatinine to serum cystatin C (Cre/CysC), and knee extensor muscle strength/body weight (KEMS) which reflects their leg strength.

Design, setting, participants, and measurements

We recruited 147 outpatients with CKD (87 men; mean age, 61.6 ± 9.8 years; mean eGFRcreat, 40.7 ± 12.9 mL/min/1.73m2) in this cross-sectional study. KEMS was assessed using a wire strain gauge dynamometer. Skeletal muscle mass and body fat mass were assessed by bioelectrical impedance analysis.

Results

The mean value of Cre/CysC was 1.01 ± 0.18. The mean value of KEMS was 1.60 ± 0.47 Nm/kg. In multivariate linear regression analysis, skeletal muscle mass (p < 0.01), body fat mass (p < 0.01), hemoglobin (p = 0.01), and Cre/CysC (p < 0.01) was independently related to KEMS. The correlation between Cre/CysC and KEMS is stronger in high quantile of Cre/CysC.

Conclusions

In predialysis CKD patients, KEMS showed lower as CKD stage advanced. Cre/CysC is significantly related to KEMS independently. Cre/CysC may be an alternative marker for leg strength in CKD patients and even more valuable to utilize in cases with high Cre/CysC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang J, Zhang L, Tang SC, Kashihara N, Kim YS, Togtokh A, et al. Disease burden and challenges of chronic kidney disease in North and East Asia. Kidney Int. 2018;94(1):22–5. https://doi.org/10.1016/j.kint.2017.12.022 (Internet).

    Article  PubMed  Google Scholar 

  2. Padilla J, Krasnoff J, DaSilva M, Hsu C-YCY, Frassetto L, Johansen KL, et al. (2008). Physical functioning in patients with chronic kidney disease. J Nephrol 21(4):550–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18651545%5Cn. http://www.scopus.com/inward/record.url?eid=2-s2.0-52649140580&partnerID=tZOtx3y1

  3. Anand S, Johansen KL, Kurella Tamura M. Aging and chronic kidney disease: the impact on physical function and cognition. J Gerontol Ser A Biol Sci Med Sci. 2014;69A(3):315–22. https://doi.org/10.1093/gerona/glt109 (Internet).

    Article  Google Scholar 

  4. Hiraki K, Yasuda T, Hotta C, Izawa KP, Morio Y, Watanabe S, et al. (2012). Decreased physical function in pre-dialysis patients with chronic kidney disease. Clin Exp Nephrol [Internet]. [cited 2013 Apr 13]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/22911116

  5. Fried LF, Lee JS, Shlipak M, Chertow GM, Green C, Ding J, et al. (2006) Chronic kidney disease and functional limitation in older people: health, aging and body composition study. J Am Geriatr Soc 54(5):750–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16696739

  6. Reese PP, Cappola AR, Shults J, Townsend RR, Gadegbeku CA, Anderson C, et al. Physical performance and frailty in chronic kidney disease. Am J Nephrol. 2013;38(4):307–15.

    Article  Google Scholar 

  7. Sakkas GK, Ball D, Mercer TH, Sargeant AJ, Tolfrey K, Naish PF. Atrophy of non-locomotor muscle in patients with end-stage renal failure. Nephrol Dial Transplant. 2003;18:2074–81.

    Article  Google Scholar 

  8. Adey D, Kumar R, Carthy JTMC, Nair KS, Kumar R, Mccarthy JT. Reduced synthesis of muscle proteins in chronic renal failure. Am J Physiol Endocrinol Metab. 2000;278:E219–25.

    Article  CAS  Google Scholar 

  9. Zhang L, Wang XH, Wang H, Du J, Mitch WE. Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy. J Am Soc Nephrol. 2010;21:419–27.

    Article  CAS  Google Scholar 

  10. Bailey JL, Zheng B, Hu Z, Price SR, Mitch WE. Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway : implications for muscle atrophy. J Am Soc Nephrol. 2006;17:1388–94.

    Article  CAS  Google Scholar 

  11. Zhang L, Du J, Hu Z, Han G, Delafontaine P, Garcia G, et al. IL-6 and serum amyloid a synergy mediates angiotensin II – induced muscle wasting. J Am Soc Nephrol. 2009;20:604–12.

    Article  CAS  Google Scholar 

  12. Chang Y-T, Wu H-L, Guo H-R, Cheng Y-Y, Tseng C-CT, Wang M-C, et al. Handgrip strength is an independent predictor of renal outcomes in patients with chronic kidney diseases. Nephrol Dial Transplant. 2011;26:3588–95.

    Article  Google Scholar 

  13. Heimbürger O, Qureshi AR, Blaner WS, Berglund L, Stenvinkel P. Hand-grip muscle strength, lean body mass, and plasma proteins as markers of nutritional status in patients with chronic renal failure close to start of dialysis therapy. Am J Kidney Dis. 2000;36(6):1213–25.

    Article  Google Scholar 

  14. Roshanravan B, Robinson-Cohen C, Patel K V, Ayers E, Littman AJ, de Boer IH, et al. (2013). Association between physical performance and all-cause mortality in CKD. J Am Soc Nephrol [Internet]. [cited 2013 Sep 29]; 24(5):822–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23599380

  15. Isoyama N, Qureshi AR, Avesani CM, Lindholm B, Bàràny P, Heimbürger O, et al. (2014). Comparative Associations of Muscle Mass and Muscle Strength with Mortality in Dialysis Patients. Clin J Am Soc Nephrol [Internet]. 9(16):1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25074839

  16. Chang Y-T, Wu H-L, Guo H-R, Cheng Y-Y, Tseng C-C, Wang M-C, et al. (2011). Handgrip strength is an independent predictor of renal outcomes in patients with chronic kidney diseases. Nephrol Dial Transplant [Internet]. 26(11):3588–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21444362

  17. LaRoche DP, Millett ED, Kralian RJ. Low strength is related to diminished ground reaction forces and walking performance in older women. Gait Posture. 2011;33(4):668–72. https://doi.org/10.1016/j.gaitpost.2011.02.022 (Internet).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Toebes MJP, Hoozemans MJM, Furrer R, Dekker J, Van Dieën JH. Associations between measures of gait stability, leg strength and fear of falling. Gait Posture. 2015;41(1):76–80.

    Article  Google Scholar 

  19. Ikezoe T, Asakawa Y, Tsutou A (2003). The relationship between quadriceps strength and balance to fall of elderly admitted to a nursing home. J Phys Ther Sci [Internet]. 15(2):75–9. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=106748607&lang=es&site=ehost-live

  20. Chan BKS, Marshall LM, Winters KM, Faulkner KA, Schwartz AV, Orwoll ES. Incident fall risk and physical activity and physical performance among older men: the osteoporotic fractures in men study. Am J Epidemiol. 2007;165(6):696–703.

    Article  Google Scholar 

  21. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res. 2010;25(3):513–9.

    Article  Google Scholar 

  22. Mustata S, Groeneveld S, Davidson W, Ford G, Kiland K, Manns B. Effects of exercise training on physical impairment, arterial stiffness and health-related quality of life in patients with chronic kidney disease: a pilot study. Int Urol Nephrol. 2011;43(4):1133–41. https://doi.org/10.1007/s11255-010-9823-7 (Internet cited 2013 Dec 10).

    Article  PubMed  Google Scholar 

  23. Headley S, Germain M, Wood R, Joubert J, Milch C, Evans E, et al. (2014). Short-term Aerobic Exercise and Vascular Function in CKD Stage 3: A Randomized Controlled Trial. Am J Kidney Dis [Internet]. [cited 2014 Jul 9];1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24776325

  24. Heiwe S, Tollback A, Clyne N. Twelve weeks of exercise training increases muscle function and walking capacity in elderly predialysis patients and helthy subjects. Nephron. 2001;88(May):48–56.

    Article  CAS  Google Scholar 

  25. Rossi AP, Burris DD, Lucas FL, Crocker GA, Wasserman JC (2014) Effects of a renal rehabilitation exercise program in patients with CKD: a randomized, controlled trial. Clin J Am Soc Nephrol [Internet]. [cited 2014 Dec 30];9(12):2052–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25414318

  26. Hiraki K, Shibagaki Y, Izawa KP, Hotta C, Wakamiya A, Sakurada T, et al. Effects of home-based exercise on pre-dialysis chronic kidney disease patients: a randomized pilot and feasibility trial. BMC Nephrol. 2017;18(1):198. https://doi.org/10.1186/s12882-017-0613-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Howden EJ, Coombes JS, Strand H, Douglas B, Campbell KL, Isbel NM. Exercise training in CKD: efficacy, adherence, and safety. Am J Kidney Dis. 2015;65(4):583–91. https://doi.org/10.1053/j.ajkd.2014.09.017 (Internet).

    Article  PubMed  Google Scholar 

  28. Michikawa T, Nishiwaki Y, Takebayashi T, Toyama Y. One-leg standing test for elderly populations. J Orthop Sci. 2009;14(5):675–85.

    Article  Google Scholar 

  29. Beauchet O, Fantino B, Allali G, Muir S, Montero-Odasso M, Annweiler C. Timed up and go test and risk of falls in older adults: a systematic review. J Nutr Heal Aging. 2011;15(10):933–8.

    Article  CAS  Google Scholar 

  30. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85-94.

    Article  CAS  Google Scholar 

  31. Bohannon RW. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil. 1997;78(1):26–32.

    Article  CAS  Google Scholar 

  32. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol Ser A-Biol Sci Med Sci. 2006;61(1):72–7.

    Article  Google Scholar 

  33. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz A V, et al. (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci [Internet]. 61(10):1059–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17077199

  34. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–213.

    Article  CAS  Google Scholar 

  35. Stevens LA, Coresh J, Greene T, Levey AS (2006). Assessing kidney function--measured and estimated glomerular filtration rate. N Engl J Med [Internet]. 354(23):2473–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16760447

  36. Coll E, Botey A, Alvarez L, Poch E, Quintó L, Saurina A, et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis. 2000;36(1):29–34.

    Article  CAS  Google Scholar 

  37. Kusunoki H, Tsuji S, Wada Y, Fukai M, Nagai K, Itoh M, et al. Relationship between sarcopenia and the serum creatinine/cystatin C ratio in Japanese rural community—dwelling older adults. JCSM Clin Rep. 2018;3:1–14.

    Google Scholar 

  38. Ichikawa T, Miyaaki H, Miuma S, Motoyoshi Y, Yamashima M, Yamamichi S, et al. Indices calculated by serum creatinine and cystatin C as predictors of liver damage, muscle strength and sarcopenia in liver disease. Biomed Rep. 2020;2020:89–98.

    Google Scholar 

  39. Lin YL, Chen SY, Lai YH, Wang CH, Kuo CH, Liou HH, et al. Serum creatinine to cystatin C ratio predicts skeletal muscle mass and strength in patients with non-dialysis chronic kidney disease. Clin Nutr. 2019. https://doi.org/10.1016/j.clnu.2019.10.027 (In press).

    Article  PubMed  Google Scholar 

  40. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53(6):982–92. https://doi.org/10.1053/j.ajkd.2008.12.034.

    Article  PubMed  CAS  Google Scholar 

  41. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S (2013). GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis [Internet] 61(2):197–203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22892396

  42. Katoh M, Isozaki K (2014) Reliability of Isometric Knee Extension Muscle Strength Measurements of Healthy Elderly Subjects Made with a Hand-held Dynamometer and a Belt. J Phys Ther Sci [Internet]. 26(12):1855–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4273041&tool=pmcentrez&rendertype=abstract

  43. Odden MC, Chertow GM, Fried LF, Newman AB, Connelly S, Angleman S, et al. Cystatin C and measures of physical function in elderly adults: the health, aging, and body composition (HABC) study. Am J Epidemiol. 2006;164(12):1180–9.

    Article  Google Scholar 

  44. Stel VS, Smit JH, Pluijm SMF, Lips P. Balance and mobility performance as treatable risk factors for recurrent falling in older persons. J Clin Epidemiol. 2003;56(7):659–68.

    Article  Google Scholar 

  45. Osaka T, Hamaguchi M, Hashimoto Y, Ushigome E, Tanaka M, Yamazaki M, et al. (2018). Decreased the creatinine to cystatin C ratio is a surrogate marker of sarcopenia in patients with type 2 diabetes. Diabetes Res Clin Pract [Internet]. 139:52–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29496508

  46. Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol. 2014;10(9):504–16. https://doi.org/10.1038/nrneph.2014.112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3(July):1–18.

    Google Scholar 

  48. Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H, et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the concord health and ageing in men project. J Am Geriatr Soc. 2010;58(11):2055–62.

    Article  Google Scholar 

  49. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Performance of serum cystatin C versus serum creatinine as a marker of glomerular filtration rate as measured by inulin renal clearance. Clin Exp Nephrol. 2011;15(6):868–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiro Yamagata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiomi, K., Saito, C., Nagai, K. et al. Ratio of serum creatinine to cystatin C is related to leg strength in predialysis CKD patients. Clin Exp Nephrol 25, 1079–1086 (2021). https://doi.org/10.1007/s10157-021-02050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-021-02050-7

Keywords

Navigation