Log in

De Novo Assembly and Annotation of the Siganus fuscescens (Houttuyn, 1782) Genome: Marking a Pioneering Advance for the Siganidae Family

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study presents the first draft genome of Siganus fuscescens, and thereby establishes the first whole-genome sequence for a species in the Siganidae family. Leveraging both long and short read sequencing technologies, i.e., Oxford Nanopore and Illumina sequencing, we successfully assembled a mitogenome spanning 16.494 Kb and a first haploid genome encompassing 498 Mb. The assembled genome accounted for a 99.6% of the estimated genome size and was organized into 164 contigs with an N50 of 7.2 Mb. This genome assembly showed a GC content of 42.9% and a high Benchmarking Universal Single-Copy Orthologue (BUSCO) completeness score of 99.5% using actinopterygii_odb10 lineage, thereby meeting stringent quality standards. In addition to its structural aspects, our study also examined the functional genomics of this species, including the intricate capacity to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFAs) and secrete venom. Notably, our analyses revealed various repeats elements, which collectively constituted 17.43% of the genome. Moreover, annotation of 28,351 genes uncovered both shared genetic signatures and those that are unique to S. fuscescens. Our assembled genome also displayed a moderate prevalence of gene duplication compared to other fish species, which suggests that this species has a distinctive evolutionary trajectory and potentially unique functional constraints. Taken altogether, this genomic resource establishes a robust foundation for future research on the biology, evolution, and the aquaculture potential of S. fuscescens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  • Avenant C (2018) Diet of the tropicalised herbivore S. fuscescens across a broad latitudinal gradient and comparisons with temperate seagrass-associated omnivorous fishes. Edith Cowan University. Retrieved from https://ro.ecu.edu.au/theses/2139

  • Azzuro E, Tiralongo F (2020) First record of the mottled spinefoot S. fuscescens (Houttuyn, 1782) in Mediterranean waters: a Facebook based detection. Mediterr Mar Sci 21:448–451

    Google Scholar 

  • Bonenfant Q, Noé L, Touzet H (2023) Porechop_ABI: discovering unknown adapters in Oxford Nanopore Technology sequencing reads for downstream trimming. Bioinform Adv 3(1):vbac085. https://doi.org/10.1093/bioadv/vbac085

  • Brůna T, Lomsadze A, Borodovsky M (2020) GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom Bioinform 2:lqaa026

    Article  PubMed  PubMed Central  Google Scholar 

  • Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M (2021) BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP + and AUGUSTUS supported by a protein database. NAR Genom Bioinform 3:lqaa108

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchfink B, **e C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  • Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J (2021) eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38:5825–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen N (2004) Using repeat masker to identify repetitive elements in genomic sequences. Curr Protoc Bioinf 5:4–10

    Article  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang Y, Wang AY, Gao M, Chong Z (2021) Accurate long read de novo assembly evaluation with Inspector. Genome Biol 22:1–21

    Article  Google Scholar 

  • Cinner JE, Huchery C, Darling ES, Humphries AT, Graham NA, Hicks CC, Marshall N, McClanahan TR (2013) Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS ONE 8:e74321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datsomor AK, Gillard G, ** Y, Olsen RE, Sandve SR (2022) Molecular regulation of biosynthesis of long chain polyunsaturated fatty acids in Atlantic salmon. Mar Biotechnol 24:661–670

    Article  CAS  Google Scholar 

  • De Coster W, D’hert S, Schultz DT, Cruts M, Van Broeckhoven C (2018) NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34:2666–2669

    Article  PubMed  PubMed Central  Google Scholar 

  • Duray MN (1998) Biology and culture of siganids. Aquaculture Department, Southeast Asian Fisheries Development Center

    Google Scholar 

  • Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Emms DM, Kelly S (2017) STRIDE: species tree root inference from gene duplication events. Mol Biol Evol 34:3267–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF (2020) RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A 117:9451–9457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimori S (2021) Humans have intestinal bacteria that degrade the plant cell walls in herbivores. World J Gastroenterol 27:7784

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabaldón T, Koonin EV (2013) Functional and evolutionary implications of gene orthology. Nat Rev Genet 14:360–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabriel L, Brůna T, Hoff KJ, Ebel M, Lomsadze A, Borodovsky M, Stanke M (2023) BRAKER3: fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS and TSEBRA. bioRxiv. https://doi.org/10.1101/2023.06.10.544449

  • Ghilardi M (2022) MorFishJ: A software package for fish traditional morphometrics. Zenodo. https://doi.org/10.5281/zenodo.6969273

    Article  Google Scholar 

  • Gotoh O (2008) A space-efficient and accurate method for map** and aligning cDNA sequences onto genomic sequence. Nucleic Acids Res 36:2630–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory TR (2002) Animal genome size database. https://www.genomesize.com/

  • Gremme G, Steinbiss S, Kurtz S (2013) GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE ACM Trans Comp Biol Bioinform 10:645–656

    Article  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledgebase of divergence times among organisms. Bioinformatics 22:2971–2972

    Article  CAS  PubMed  Google Scholar 

  • Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M (2016) BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32:767–769

    Article  CAS  PubMed  Google Scholar 

  • Hoff KJ, Lomsadze A, Borodovsky M, Stanke M (2019) Whole-genome annotation with BRAKER. Gene Prediction. Humana, New York, NY, pp 65–95. https://doi.org/10.1007/978-1-4939-9173-0_5.

    Chapter  Google Scholar 

  • Hsu TH, Adiputra YT, Burridge CP, Gwo JC (2011) Two spinefoot colour morphs: mottled spinefoot S. fuscescens and white-spotted spinefoot S. Canaliculatus are synonyms. J Fish Biol 79:1350–1355

    Article  PubMed  Google Scholar 

  • Hu J, Fan J, Sun Z, Liu S (2020) NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36:2253–2255

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang Z, Sun Z, Hu B, Ayoola AO, Liang F, Wang S (2024) NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome Biology 25(1):107. https://doi.org/10.1186/s13059-024-03252-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa A, Kabeya N, Ikeya K, Kakioka R, Cech JN, Osada N, Kitano J (2019) A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science 364:886–889

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto K, Abdullah MF, Chang CW, Yoshino T, Imai H (2015) Genetic isolation of the mottled spinefoot S. fuscescens ryukyu archipelago population. Biogeography 17:61–85

    Google Scholar 

  • Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata H, Gotoh O (2012) Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. Nucleic Acids Res 40:e161–e161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiarpinijnun A, Benjakul S, Pornphatdetaudom A, Shibata J, Okazaki E, Osako K (2017) High arachidonic acid levels in the tissues of herbivorous fish species (S. Fuscescens, Calotomus japonicus and Kyphosus bigibbus). Lipids 52:363–373

    Article  CAS  PubMed  Google Scholar 

  • Katoh S, Standley K DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiriake A, Ishizaki S, Nagashima Y, Shiomi K (2017) Occurrence of a stonefish toxin-like toxin in the venom of the rabbitfish S. fuscescens. Toxicon 140:139–146

    Article  CAS  PubMed  Google Scholar 

  • Kuriiwa K, Hanzawa N, Yoshino T, Kimura S, Nishida M (2007) Phylogenetic relationships and natural hybridization in rabbitfishes (Teleostei: Siganidae) inferred from mitochondrial and nuclear DNA analyses. Mol Phylogenet Evol 45:69–80

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, Zdobnov EM (2023) OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res 51:D445–D451

    Article  CAS  PubMed  Google Scholar 

  • Lartillot N, Philippe H (2004) A bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095–1109

    Article  CAS  PubMed  Google Scholar 

  • Lenanton RCJ, Dowling CE, Smith KA, Fairclough DV, Jackson G (2017) Potential influence of a marine heatwave on range extensions of tropical fishes in the eastern Indian Ocean—invaluable contributions from amateur observers. Reg Stud Mar Sci 13:19–31

    Google Scholar 

  • Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, Lam TW (2016) MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102:3–11

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang Q, Liu Y (2018) Rabbitfish–an emerging herbivorous marine aquaculture species. Aquaculture in China: success stories and modern trends. (pp 329–334). https://doi.org/10.1002/9781119120759.ch3_12

  • Li Y, Wen Z, You C, **e Z, Tocher DR, Zhang Y, Li Y (2020) Genome wide identification and functional characterization of two LC-PUFA biosynthesis elongase (elovl8) genes in rabbitfish (Siganus canaliculatus). Aquaculture 522:735127

    Article  CAS  Google Scholar 

  • Lieske E, Myers R (1994) Collins pocket guide to coral reef fishes: IndoPacific and Caribbean. Herper Collins, London

    Google Scholar 

  • Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33:6494–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manni M, Berkeley MR, Seppey M, Zdobnov EM (2021) BUSCO: assessing genomic data quality and beyond. Curr Protoc 1:e323

    Article  PubMed  Google Scholar 

  • Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes FK, Vanderpool D, Fulton B, Hahn MW (2020) CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36:5516–5518

    Article  CAS  Google Scholar 

  • Meng G, Li Y, Yang C, Liu S (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res 47:e63–e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael PJ, Hyndes GA, Vanderklift MA, Vergés A (2013) Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Mar Ecol Prog Ser 482:227–240

    Article  Google Scholar 

  • Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A (2018) Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34:i142–i150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh DJ, Kim JY, Lee JA, Yoon WJ, Park SY, Jung YH (2007) Complete mitochondrial genome of the rabbitfish S. fuscescens (Perciformes, Siganidae) full length Research Paper. DNA Seq 18:295–301

    Article  CAS  PubMed  Google Scholar 

  • Osako K, Saito H, Kuwahara K, Okamoto A (2006) Year-round high arachidonic acid levels in herbivorous rabbit fish S. fuscescens tissues. Lipids 41:473–489

    Article  CAS  PubMed  Google Scholar 

  • Ou S, Jiang N (2018) LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol 176:1410–1422

    Article  CAS  PubMed  Google Scholar 

  • Park M (1797) Descriptions of eight new fishes from Sumatra. Trans Linn Soc Lond 1:33–38. https://doi.org/10.1111/j.1096-3642.1797.tb00553.x

  • Pertiwi NPD, Hidayat NI, Henderson C, Putra ING, Sembiring A (2019) Redefining dispersal boundaries of S. fuscescens in the Coral Triangle area. Indo J Mar Sci 24:31-40. https://doi.org/10.14710/ik.ijms.24.1.31-40

  • Pflug JM, Holmes VR, Burrus C, Johnston JS, Maddison DR (2020) Measuring genome sizes using read-depth, k-mers, and flow cytometry: methodological comparisons in beetles (Coleoptera). G3: genes. Genomes Genet 10:3047–3060

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2023) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

  • Ranallo-Benavidez TR, Jaron KS, Schatz MC (2020) GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun 11:1432. https://www.nature.com/articles/s41467-020-14998-3. Accessed on 8 January 2023

  • Roach MJ, Schmidt SA, Borneman AR (2018) Purge haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 19:460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Miya M, Fukunaga T, Sado T, Iwasaki W (2018) MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol Biol Evol 35:1553–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seale AP, Ellies S (2019) Sustainable capture-based aquaculture of rabbitfish in Pacific Island lagoons. Aquacult Aquaponics 1:1–9

    Google Scholar 

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508

    Article  PubMed  Google Scholar 

  • Skiftesvik AB, Durif CM, Bjelland RM, Browman HI (2015) Distribution and habitat preferences of five species of wrasse (Family Labridae) in a Norwegian fjord. ICES J Mar Sci 72:890–899

    Article  Google Scholar 

  • Smit AFA, Hubley R, Green P (2015) RepeatMasker Open-4.0. 2013–2015. http://www.repeatmasker.org

  • Steinke D, Salzburger W, Braasch I, Meyer A (2006) Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics 7:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF (2021) The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA 12:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Lu F, Luo Y, Bie L, Xu L, Wang Y (2023) OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 51:W397–W403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachana K, Larsson TA, Powell S, Chen WH, Doerks T, Muller J, Bork P (2011) Orthology prediction methods: a quality assessment using curated protein families. BioEssays 33:769–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Campbell AH, Ballesteros E, Hoey AS, Vila-Concejo A, Bozec YM, Steinberg PD (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci U S A 113:13791–13796

    Article  PubMed  PubMed Central  Google Scholar 

  • Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC (2017) GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33:2202–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahyuningtyas LA, Nurilmala M, Sondita MFA, Taurusman AA, Sudrajat AO (2017) Nutritional profile of rabbitfish (Siganus spp.) from the kepulauan seribu (Thousand Islands), Jakarta, Indonesia. Int Food Res J 24:685

    CAS  Google Scholar 

  • Woodland DJ (1990) Revision of the fish family Siganidae with descriptions of two new species and comments on distribution and biology. Indo-Pacific Fishes 19

  • Woodland D (1997) Siganidae. Spinefoots, rabbitfishes. FAO identification guide for fishery purposes. Western Cent Pac 3627–3650. http://www.fao.org/docrep/009/x2400e/x2400e00.htm

  • Woodland DJ (2001) Siganidae. In: Carpenter KE, Niem VH (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 6. Bony fishes part 4 (Labridae to Latimeriidae), estuarine crocodiles, sea turtles, sea snakes and marine mammal (PDF). FAO, Rome

  • Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Yu G (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov 2(3). https://doi.org/10.1016/j.xinn.2021.100141

  • Yamada U, Shirai S, Irie T (1995) Names and illustrations of fishes from the East China Sea and the Yellow Sea. Japanese Chinese Korean

  • Zarco-Perello S, Bosch NE, Bennett S, Vanderklift MA, Wernberg T (2021) Persistence of tropical herbivores in temperate reefs constrains kelp resilience to cryptic habitats. J Ecol 109:2081–2094

    Article  Google Scholar 

  • Zhou L, **e Z, Zhang Y (2016) The complete mitochondrial genome of the S. canaliculatus (Perciformes: Siganidae). Mitochondrial DNA Part A 27:1111–1112

    Article  CAS  Google Scholar 

  • Zhu L, Yang Z, Yao R, Xu L, Chen H, Gu X, Yang X (2018) Potential mechanism of detoxification of cyanide compounds by gut microbiomes of bamboo-eating pandas. MSphere 3:10–1128

    Article  CAS  Google Scholar 

Download references

Funding

This research was partly supported by the Science and Technology Research Partnership for Sustainable Development (SATREPS JPMJSA1806).

Author information

Authors and Affiliations

Authors

Contributions

Samuel Mwakisha Mwamburi, Satoshi Kawato, and Hidehiro Kondo were responsible for conceptualization. Samuel Mwakisha Mwamburi, Kayo Konishi, and Reiko Nozaki designed the methodology. Samuel Mwakisha Mwamburi, Satoshi Kawato, and Miho Furukawa performed formal analysis and data curation. Samuel Mwakisha Mwamburi was responsible for writing original draft and visualization. Satoshi Kawato, Hidehiro Kondo, and Ikuo Hirono participated in review and editing. Hidehiro Kondo supervised the project.

Corresponding author

Correspondence to Hidehiro Kondo.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1800 KB)

Supplementary file2 (XLSX 3140 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mwamburi, S.M., Kawato, S., Furukawa, M. et al. De Novo Assembly and Annotation of the Siganus fuscescens (Houttuyn, 1782) Genome: Marking a Pioneering Advance for the Siganidae Family. Mar Biotechnol (2024). https://doi.org/10.1007/s10126-024-10325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10126-024-10325-9

Keywords

Navigation