Log in

H2O2-Responsive Injectable Polymer Dots Hydrogel for Long-term Photodynamic Therapy of Tumors

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) has been emerged as a promising modality for cancer treatment. However, the development of drug delivery system enabling continuous release of photosensitizers (PSs) for long-term PDT treatment still remains challenges. Herein, a H2O2-responsive injectable hydrogel, covalently crosslinked by N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1,N1,N3,N3-tetramethylpropane-1,3-diaminium (TSPBA) with PVA containing polythiophene quaternary ammonium salt (PT2) polymer dots (PDots) as a photosensitizer was fabricated. Under the stimulation of H2O2, the obtained injectable hydrogel gradually degrades and releases PDots. In vitro experiments suggested that the released PDots could realize efficient tumor cells inhibition through its robust singlet oxygen generation capability upon 577 nm laser irradiation. In vivo studies demonstrated a sustained retention of PDots for at least 7 days following single-dose administration, facilitating efficient tumor inhibition with light treatments for 3 times without apparent biotoxicity. This work presents an innovative polymer dots-based composite local drug delivery system for long-term PDT in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, H.; Tian, J.; He, W.; Guo, Z. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015, 137, 1539–1547.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, S.; Sun, T.; Zheng, M.; **e, Z. Carbon dots based nanoscale covalent organic frameworks for photodynamic therapy. Adv. Funct. Mater. 2020, 30, 2004680.

    Article  CAS  Google Scholar 

  3. Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, X.; Gao, J.; Ding, Y.; Lu, Y.; Wei, Q.; Cui, D.; Fan, J.; Li, X.; Zhu, E.; Lu, Y.; Wu, Q.; Li, L.; Huang, W. Multi-functional liposome: a powerful theranostic nano-platform enhancing photodynamic therapy. Adv. Sci. 2021, 8, 2011806.

    Article  Google Scholar 

  5. Derycke, A. S. L., de Witte, P. A. M. Liposomes for photodynamic therapy. Adv. Drug Delivery Rev. 2004, 56, 17–30.

    Article  CAS  Google Scholar 

  6. Dickinson, B. C.; Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 2011, 7, 504–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dimatteo, R.; Darling, N. J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 2018, 127, 167–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dolmans, D.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  9. Feng, L.; Dong, Z.; Tao, D.; Zhang, Y.; Liu, Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl. Sci. Rev. 2018, 5, 269–286.

    Article  CAS  Google Scholar 

  10. Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C. S.; Zhang, W.; Han, X. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.

    Article  CAS  PubMed  Google Scholar 

  11. Guo, L.; Ge, J.; Wang, P. Polymer dots as effective phototheranostic agents. Photochem. Photobio. 2018, 94, 916–934.

    Article  CAS  Google Scholar 

  12. Heiden, M. G. V.; Cantley, L. C.; Thompson, C. B. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033.

    Article  Google Scholar 

  13. Huang, P.; Lin, J.; Wang, X.; Wang, Z.; Zhang, C.; He, M.; Wang, K.; Chen, F.; Li, Z.; Shen, G.; Cui, D.; Chen, X. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010, 141, 52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, J.; Cho, H. R.; Jeon, H.; Kim, D.; Song, C.; Lee, N.; Choi, S. H.; Hyeon, T. Continuous O2-evolving MnFe2O4 anoppartiele-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc. 2017, 139, 10992–10995.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H.; Yang, Y.; Wang, A.; Han, M.; Cui, W.; Li, J. Hyperbranched polyglycerol-doped mesoporous silica nanoparticles for one- and two-photon activated photodynamic therapy. Adv. Funct. Mater. 2016, 26, 2561–2570.

    Article  CAS  Google Scholar 

  17. **ang, J. Y.; Zhang, W. L.; Li, H. T.; He, Y. N. pH Induced self-assembly of AIE fluorescent probe for tumor imaging. Chinese J. Polym. Sci. 2023, 42, 7–13.

    Article  Google Scholar 

  18. Munn, D. H.; Mellor, A. L. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016, 37, 193–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Norouzi, M.; Nazari, B.; Miller, D. W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discovery Today 2016, 21, 1835–1849.

    Article  CAS  PubMed  Google Scholar 

  20. Park, J.; Jiang, Q.; Feng, D.; Mao, L.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525.

    Article  CAS  PubMed  Google Scholar 

  21. Pham, T. C.; Nguyen, V. N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619.

    Article  CAS  PubMed  Google Scholar 

  22. Qu, H.; Chen, H.; Cheng, W.; Pan, Y.; Duan, Z.; Wang, Y.; Liang, X. J.; Xue, X. Charge- reversible crosslinked nanoparticle for proapoptotic peptide delivery and synergistic photodynamic cancer therapy. Nano Res. 2023, 16, 13267–13282.

    Article  CAS  Google Scholar 

  23. Rodriguez, P. L.; Harada, T.; Christian, D. A.; Pantano, D. A.; Tsai, R. K.; Discher, D. E. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013, 339, 971–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi, H.; Ma, X.; Zhao, Q.; Liu, B.; Qu, Q.; An, Z.; Zhao, Y.; Huang, W. Ultrasmall phosphorescent polymer dots for ratiometric oxygen sensing and photodynamic cancer therapy. Adv. Funct. Mater. 2014, 24, 4823–4830.

    Article  CAS  Google Scholar 

  25. Sun, B.; Chang, R.; Cao, S.; Yuan, C.; Zhao, L.; Yang, H.; Li, J.; Yan, X.; van Hest, J. C. M. Acid-activatable transmorphic peptide-based nanomaterials for photodynamic therapy. Angew. Chem. Int. Ed. 2020, 59, 20582–20588.

    Article  CAS  Google Scholar 

  26. Tang, D.; Yu, Y.; Zhang, J.; Dong, X.; Liu, C.; **ao, H. Self-sacrificially degradable pseudo-semiconducting polymer nanoparticles that integrate NIR-II fluorescence bioimaging, photodynamic immunotherapy, and photo-activated chemotherapy. Adv. Mater. 2022, 34, 202203820.

    Article  Google Scholar 

  27. Tang, Y.; Chen, H.; Chang, K.; Liu, Z.; Wang, Y.; Qu, S.; Xu, H.; Wu, C. Photo-cross-linkable polymer dots with stable sensitizer loading and amplified singlet oxygen generation for photodynamic therapy. ACS Appl. Mater. Interfaces 2017, 9, 3419–3431.

    Article  CAS  PubMed  Google Scholar 

  28. Ma, X.B.; Yang, R.; Sekhar, K. P. C.; Chi, B. Injectable hyaluronic acid/poly(γ-glutamic acid) hydrogel with step-by-step tunable properties for soft tissue engineering. Chinese J. Polym. Sci. 2021, 39, 957–965.

    Article  CAS  Google Scholar 

  29. Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 5, 7000–7009.

    Article  CAS  PubMed  Google Scholar 

  30. Ma, Z. Y.; Li, D. Y.; Jia, X.; Wang, R. L.; Zhu, M. F. Recent advances in bio-inspired versatile polydopamine platforms for “smart” cancer photothermal therapy. Chinese J. Polym. Sci. 2023, 41, 699–712.

    Article  CAS  Google Scholar 

  31. Chen, T.; Yao, T.; Peng, H.; Whittaker, A. K.; Li, Y.; Zhu, S.; Wang, Z. An injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy with ultrahigh efficiency based on carbon dots and modified cellulose nanocrystals. Adv. Funct. Mater. 2021, 31, 202106079.

    Article  Google Scholar 

  32. van Sluis, R.; Bhujwalla, Z. M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdn, S. N.; Galons, J. P.; Gillies, R. J. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med. 1999, 41, 743–750.

    Article  CAS  PubMed  Google Scholar 

  33. Walkey, C. D.; Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41, 2780–2799.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, C.; Cheng, L.; Liu, Y.; Wang, X.; Ma, X.; Deng, Z.; Li, Y.; Liu, Z. Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv. Funct. Mater. 2013, 23, 3077–3086.

    Article  CAS  Google Scholar 

  35. Wu, X.; Chen, J.; Wu, M.; Zhao, J. X. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 2015, 5, 322–344.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yu, L.; Ding, J. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 2008, 37, 1473–1481.

    Article  CAS  PubMed  Google Scholar 

  37. Yu, W.; Liu, R.; Zhou, Y.; Gao, H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 2020, 6, 100–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lan, M.; Wu, J.; Liu, W.; Zhang, W.; Ge, J.; Zhang, H.; Sun, J.; Zhao, W.; Wang, P. Copolythiophene- derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. J. Am. Chem. Soc. 2012, 134, 6685–6694.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52272052 and 51972315).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Sheng Wu or Jie-Chao Ge.

Ethics declarations

The authors declare no interest conflict.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liang, K., Li, J. et al. H2O2-Responsive Injectable Polymer Dots Hydrogel for Long-term Photodynamic Therapy of Tumors. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3155-z

Keywords

Navigation