Log in

Competition of Composition Fluctuation Modes in Weakly Segregated Salt-doped Symmetric Diblock Copolymers

  • Research Article
  • Special Issue: Charged Polymers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Salt-doped block copolymers have widespread applications in batteries, fuel cells, semiconductors, and various industries, where their properties crucially depend on phase separation behavior. Traditionally, investigations into salt-doped diblock copolymers have predominantly focused on microphase separation, overlooking the segregation between ionic and polymeric species. This study employs weak segregation theory to explore the interplay between phase separation dominated by the polymer-modulated mode and the salt-out-modulated mode, corresponding to microscopic and macroscopic phase separations, respectively. By comparing diblock copolymers doped with salts to those doped with neutral solvents, we elucidate the significant role of charged species in modulating phase behavior. The phase separation mode exhibits a transition between the polymer-modulated and salt-out-modulated modes at different wavenumbers. In systems doped with neutral solvents, this transition is stepwise, while in salt-ion-doped systems, it is continuous. With a sufficiently large Flory-Huggins parameter between ions and polymers, the salt-out-modulated mode becomes dominant, promoting macrophase separation. Due to the solvation effect of salt ions, salt-doped systems are more inclined to undergo microphase separation. Furthermore, we explore factors influencing the critical wavenumber of phase separation, including do** level and the Flory-Huggins parameters between two blocks and between ions and polymeric species. Our findings reveal that in a neutral solvent environment, these factors alter only the boundary between micro- and macro-phase separations, leaving the critical wavenumber unchanged in microphase separation cases. However, in a salt-doped environment, the critical wavenumber of microphase separation varies with these parameters. This provides valuable insights into the pivotal role of electrostatics in the phase separation of salt-doped block copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding author upon reasonable request. The author’s contact information: xk@scut.edu.cn.

References

  1. Bates, C. M.; Bates, F. S. 50th Anniversary perspective: block polymers—pure potential. Macromolecules 2017, 50, 3–22.

    Article  CAS  Google Scholar 

  2. Floudas, G.; Hadjichristidis, N.; Stamm, M.; Likhtman, A. E.; Semenov, A. N. Microphase separation in block copolymer/homopolymer blends: theory and experiment. J. Chem. Phys. 1997, 106, 3318–3328.

    Article  CAS  Google Scholar 

  3. Huang, Y. Y.; Hsu, J. Y.; Chen, H. L.; Hashimoto, T. Existence of fcc-packed spherical micelles in diblock copolymer melt. Macromolecules 2007, 40, 406–409.

    Article  CAS  Google Scholar 

  4. Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Stability of the perforated layer (PL) phase in diblock copolymer melts. Macromolecules 1997, 30, 3788–3795.

    Article  CAS  Google Scholar 

  5. Takenaka, M.; Wakada, T.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Shimizu, H.; Kim, M. I.; Hasegawa, H. Orthorhombic Fddd network in diblock copolymer melts. Macromolecules 2007, 40, 4399–4402.

    Article  CAS  Google Scholar 

  6. G., A. T. K.; Gotrik, K. W.; Hannon, A. F.; Alexander-Katz, A.; Ross, C. A.; Berggren, K. K. Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 2012, 336, 1294–1298.

    Article  Google Scholar 

  7. Liu, C.-C.; Franke, E.; Mignot, Y.; **e, R.; Yeung, C. W.; Zhang, J.; Chi, C.; Zhang, C.; Farrell, R.; Lai, K.; Tsai, H.; Felix, N.; Corliss, D. Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond. Nat. Electron. 2018, 1, 562–569.

    Article  CAS  Google Scholar 

  8. Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Förster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. Fluctuations, conformational asymmetry and block copolymer phase behaviour. Faraday Discuss. 1994, 98, 7–18.

    Article  CAS  Google Scholar 

  9. Ohta, T.; Kawasaki, K. Equilibrium morphology of block copolymer melts. Macromolecules 1986, 19, 2621–2632.

    Article  CAS  Google Scholar 

  10. Fredrickson, G. H.; Helfand, E. Fluctuation effects in the theory of microphase separation in block copolymers. J. Chem. Phys. 1987, 87, 697–705.

    Article  CAS  Google Scholar 

  11. Mayes, A. M.; Olvera de la Cruz, M. Microphase separation in multiblock copolymer melts. J. Chem. Phys. 1989, 91, 7228–7235.

    Article  CAS  Google Scholar 

  12. Bates, F. S.; Fredrickson, G. H. Block copolymers—designer soft materials. Phys. Today 1999, 52, 32–38.

    Article  CAS  Google Scholar 

  13. Dobrynin, A. V.; Erukhimovich, I. Y. Computer-aided comparative investigation of architecture influence on block copolymer phase diagrams. Macromolecules 1993, 26, 276–281.

    Article  CAS  Google Scholar 

  14. Matsen, M. W.; Bates, F. S. Unifying weak- and strong-segregation block copolymer theories. Macromolecules 1996, 29, 1091–1098.

    Article  CAS  Google Scholar 

  15. Matsen, M. W. Effect of architecture on the phase behavior of ab-type block copolymer melts. Macromolecules 2012, 45, 2161–2165.

    Article  CAS  Google Scholar 

  16. Zhulina, E. B.; Sheiko, S. S.; Borisov, O. V. Theory of microphase segregation in the melts of copolymers with dendritically branched, bottlebrush, or cycled blocks. ACS Macro Lett. 2019, 8, 1075–1079.

    Article  CAS  PubMed  Google Scholar 

  17. Soo, P. P.; Huang, B.; Jang, Y.; Chiang, Y.; Sadoway, D. R.; Mayes, A. M. Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J. Electrochem. Soc. 1999, 146, 32.

    Article  CAS  Google Scholar 

  18. Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  PubMed  Google Scholar 

  19. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  PubMed  Google Scholar 

  20. Lodge, T. P. A Unique platform for materials design. Science 2008, 321, 50–51.

    Article  CAS  PubMed  Google Scholar 

  21. Brown, J. R.; Seo, Y.; Hall, L. M. Ion correlation effects in salt-doped block copolymers. Phys. Rev. Lett. 2018, 120, 127801.

    Article  PubMed  Google Scholar 

  22. Gartner, T. E. I.; Morris, M. A.; Shelton, C. K.; Dura, J. A.; Epps, T. H. I. Quantifying lithium salt and polymer density distributions in nanostructured ion-conducting block polymers. Macromolecules 2018, 51, 1917–1926.

    Article  CAS  Google Scholar 

  23. Teran, A. A.; Balsara, N. P. Thermodynamics of block copolymers with and without salt. J. Phys. Chem. B 2014, 118, 4–17.

    Article  CAS  PubMed  Google Scholar 

  24. Nakamura, I. Ion solvation in polymer blends and block copolymer melts: effects of chain length and connectivity on the reorganization of dipoles. J. Phys. Chem. B 2014, 118, 5787–5796.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Z. G. Effects of ion solvation on the miscibility of binary polymer blends. J. Phys. Chem. B 2008, 112, 16205–16213.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J. Y.; Chen, W.; Russell, T. P. Ion-complexation-induced changes in the interaction parameter and the chain conformation of PS-b-PMMA copolymers. Macromolecules 2008, 41, 4904–4907.

    Article  CAS  Google Scholar 

  27. Nakamura, I.; Balsara, N. P.; Wang, Z. G. Thermodynamics of ion-containing polymer blends and block copolymers. Phys. Rev. Lett. 2011, 107, 198301.

    Article  PubMed  Google Scholar 

  28. Young, W. S.; Epps, T. H. I. Salt do** in PEO-containing block copolymers: counterion and concentration effects. Macromolecules 2009, 42, 2672–2678.

    Article  CAS  Google Scholar 

  29. Epps, T. H.; Bailey, T. S.; Waletzko, R.; Bates, F. S. Phase behavior and block sequence effects in lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymers. Macromolecules 2003, 36, 2873–2881.

    Article  CAS  Google Scholar 

  30. Gunkel, I.; Thurn-Albrecht, T. Thermodynamic and structural changes in ion-containing symmetric diblock copolymers: a small-angle X-ray scattering study. Macromolecules 2012, 45, 283–291.

    Article  CAS  Google Scholar 

  31. Sing, C. E.; Zwanikken, J. W.; Olvera de la Cruz, M. Electrostatic control of block copolymer morphology. Nat. Mater. 2014, 13, 694–698.

    Article  CAS  PubMed  Google Scholar 

  32. Kong, X.; Hou, K. J. Y.; Qin, J. Weakening of solvation-induced ordering by composition fluctuation in salt-doped block polymers. ACS Macro Lett. 2021, 10, 545–550.

    Article  CAS  PubMed  Google Scholar 

  33. Kong, X.; Qin, J. Microphase separation in neutral homopolymer blends induced by salt-do**. Macromolecules 2023, 56, 254–262.

    Article  CAS  Google Scholar 

  34. Hou, K. J.; Qin, J. Solvation and entropic regimes in ion-containing block copolymers. Macromolecules 2018, 51, 7463–7475.

    Article  CAS  Google Scholar 

  35. Hou, K. J.; Loo, W. S.; Balsara, N. P.; Qin, J. Comparing experimental phase behavior of iondoped block copolymers with theoretical predictions based on selective ion solvation. Macromolecules 2020, 53, 3956–3966.

    Article  CAS  Google Scholar 

  36. Wang, Z. G. Fluctuation in electrolyte solutions: the self energy. Phys. Rev. E 2010, 81, 021501.

    Article  Google Scholar 

  37. Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 1980, 13, 1602–1617.

    Article  CAS  Google Scholar 

  38. Hamley, I. Block Copolymers in Solution: Fundamentals and Applications; Wiley, 2005.

  39. Fredrickson, G. H.; Leibler, L. Theory of block copolymer solutions: nonselective good solvents. Macromolecules 1989, 22, 1238–1250.

    Article  CAS  Google Scholar 

  40. Sinturel, C.; Bates, F. S.; Hillmyer, M. A. High-low N block polymers: how far can we go? ACS Macro Lett. 2015, 4, 1044–1050.

    Article  CAS  PubMed  Google Scholar 

  41. Doi, M. Soft Matter Physics; Oxford University Press, USA, 2013.

    Book  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major Research Plan of the National Natural Science Foundation of China (No. 92372104), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515110016), the Recruitment Program of Guangdong (No. 2016ZT06C322), and TCL Science and Technology Innovation Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **an Kong.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YX., Kong, X. Competition of Composition Fluctuation Modes in Weakly Segregated Salt-doped Symmetric Diblock Copolymers. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3145-1

Keywords

Navigation