Log in

An Effective Approach for the Preparation of High Performance Thermal Conductive Polymer Composites Containing Liquid Metal

  • Research Article
  • Special Issue: Functional Polymer Materials
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The preparation of high-performance thermal conductive composites containing liquid metals (LM) has attracted significant attention. However, the stable dispersion of LM within polymer solution and effective property contribution of liquid metals remains significant challenges that need to be overcome. Inspired by the properties of the dendritic structure of the tree root system in gras** the soil, “shear-induced precipitation-interfacial reset-reprotonation” processing strategy is proposed to prepare nanocomposites based on aramid micron fibers (AMFs) with hierarchical dendritic structure. Thanks to the combination of van der Waals force provided by hierarchical dendritic structure, electrostatic interaction between AMFs and LM, coordinative bonding of —NH to LM, together with interfacial re-setting and multi-step protonation, several features can be achieved through such strategy: conducive to the local filler network construction, improvement of interfacial interaction, improvement of the stability of filler dispersion in the solvent, and enhancement of mechanical and thermal properties of the films. The resulting AMFs-pH=4/LM films demonstrate a thermal conductivity of 10.98 W·m−1·K−1 at 70% filler content, improvement of 126.8% compared to ANFs/LM film; while maintaining a strength of ∼85.88 MPa, improvement of 77% compared to AMFs/LM film. They also possess insulation properties, enable heat dissipation for high power electronics. This work provides an effective strategy for the preparation of high performance polymer composites containing liquid metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. The author’s contact information: huadeng@scu.edu.cn.

References

  1. Du, Y. K.; Shi, Z. X.; Dong, S.; **, H.; Ke, X.; Zhao, P.; Jiang, B. B.; You, F. Recent progress in fabrication and structural design of thermal conductive polymer composites. Chinese J. Polym. Sci. 2024, 42, 277–291.

    Article  CAS  Google Scholar 

  2. Ji, Y.; Han, S. D.; Wu, H.; Guo, S. Y.; Zhang, F. S.; Qiu, J. H. Understanding the thermal impedance of silicone rubber/hexagonal boron nitride composites as thermal interface materials. Chinese J. Polym. Sci. 2023, 42, 352–363

    Article  Google Scholar 

  3. Mani, D.; Vu, M. C.; Anand, S.; Kim, J. B.; Jeong, T. H.; Kim, I. H.; Seo, B. K.; Islam, M. A.; Kim, S. R. Elongated liquid metal based self-healing polyurethane composites for tunable thermal conductivity and electromagnetic interference shielding. Compos. Commun. 2023, 44, 101735.

    Article  Google Scholar 

  4. Chen, Q.; Wang, Z. A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property. Compos. Part A: Appl. Sci. Manuf. 2022, 153, 106738.

    Article  CAS  Google Scholar 

  5. Chen, Q.; Ma, Z.; Wang, Z.; Liu, L.; Zhu, M.; Lei, W.; Song, P. Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 2022, 32, 2110782.

    Article  CAS  Google Scholar 

  6. Tang, L.; Ruan, K.; Liu, X.; Tang, Y.; Zhang, Y.; Gu, J. Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 2023, 16, 38.

    Article  Google Scholar 

  7. Wang, S. S.; Feng, D. Y.; Zhang, Z. M.; Liu, X.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chinese J. Polym. Sci. 2024, 42, DOI: https://doi.org/10.1007/s10118-024-3098-4.

  8. Kumar, S.; Singh, A.; Tiwari, M. Numerical and analytical modelling of effective thermal conductivity of multi-walled carbon nanotubes polymer nanocomposites including the effect of nanotube orientation and interfacial thermal resistance. Nanocomposites 2023, 9, 30–42.

    Article  Google Scholar 

  9. Gao, M. Y.; Zhai, L.; Mo, S.; Jia, Y.; Liu, Y.; He, M. H.; Fan, L. Thermally conductive polyimide/boron nitride composite films with improved interfacial compatibility based on modified fillers by polyimide brushes. Chinese J. Polym. Sci. 2023, 41, 1921–1936.

    Article  CAS  Google Scholar 

  10. Wang, X.; Liu, S.; Han, H.; Liu, X.; Wang, X. Research progress in insulating and thermal conductivity of fluorinated graphene and its polyimide composites. IET Nanodielectrics 2023, DOI: https://doi.org/10.1049/nde2.12068.

  11. Kwon, Y. J.; Park, J. B.; Jeon, Y. P.; Hong, J. Y.; Park, H. S.; Lee, J. U. A review of polymer composites based on carbon fillers for thermal management applications: design, preparation, and properties. Polymers 2021, 13, 1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Su, X.; Yang, Z.; Cheng, R.; Luvnish, A.; Han, S.; Meng, Q.; Stanford, N.; Ma, J. A comparative study of polycarbonate nanocomposites respectively containing graphene nanoplatelets, carbon nanotubes and carbon nanofibers. Adv. Nanocompos. 2024, 1, 77–85.

    Article  Google Scholar 

  13. Xu, Y.; **ng, W.; Liu, J.; Song, C. Highly thermal conductive and rechargeable 3D liquid metal network-based phase change composite enabling photothermal pad. Compos. Commun. 2023, 43, 101719.

    Article  Google Scholar 

  14. Guo, C.; He, L.; Yao, Y.; Lin, W.; Zhang, Y.; Zhang, Q.; Wu, K.; Fu, Q. Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 2022, 14, 202.

    Article  CAS  Google Scholar 

  15. Guymon, G. G.; Malakooti, M. H. Multifunctional liquid metal polymer composites. J. Polym. Sci. 2022, 60, 1300–1327.

    Article  CAS  Google Scholar 

  16. Guo, C.; Li, Y.; Xu, J.; Zhang, Q.; Wu, K.; Fu, Q. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. Mater. Horiz. 2022, 9, 1690–1699.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, S.; Wang, H. Z.; Zhao, R. Q.; Rao, W.; Liu, J. Liquid metal composites. Matter 2020, 2, 1446–1480.

    Article  Google Scholar 

  18. Bartlett, M. D.; Fassler, A.; Kazem, N.; Markvicka, E. J.; Mandal, P.; Majidi, C. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 2016, 28, 3726–3731.

    Article  CAS  PubMed  Google Scholar 

  19. Fassler, A.; Majidi, C. Liquid-phase metal inclusions for a conductive polymer composite. Adv. Mater. 2015, 27, 1928–1932.

    Article  CAS  PubMed  Google Scholar 

  20. Yan, J.; Malakooti, M. H.; Lu, Z.; Wang, Z.; Kazem, N.; Pan, C.; Bockstaller, M. R.; Majidi, C.; Matyjaszewski, K. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 2019, 14, 684–690.

    Article  CAS  PubMed  Google Scholar 

  21. Liao, M.; Liao, H.; Ye, J.; Wan, P.; Zhang, L. Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors. ACS Appl. Mater. Interfaces 2019, 11, 47358–47364.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, B.; Cao, Y.; Li, Q.; Yan, Z.; Liu, R.; Zhao, Y.; Zhang, X.; Wu, M.; Qin, Y.; Sun, C.; Yao, W.; Cao, Z.; Ajayan, P. M.; Chee, M. O. L.; Dong, P.; Li, Z.; Shen, J.; Ye, M. Liquid metal-tailored gluten network for protein-based e-skin. Nat. Commun. 2022, 13, 1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ford, M. J.; Patel, D. K.; Pan, C.; Bergbreiter, S.; Majidi, C. Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites. Adv. Mater. 2020, 32, 2002929.

    Article  CAS  Google Scholar 

  24. Li, X.; Li, M.; Shou, Q.; Zhou, L.; Ge, A.; Pei, D.; Li, C. Liquid metal initiator of ring-opening polymerization: self-capsulation into thermal/photomoldable powder for multifunctional composites. Adv. Mater. 2020, 32, 2003553.

    Article  CAS  Google Scholar 

  25. Chen, C.; Zhang, M.; Tian, K.; Fu, Q.; Deng, H. Dendritic structure-inspired coating strategy for stable and efficient solar evaporation of salinity brine. ACS Sustainable Chem. Eng. 2023, 11, 3882–3895.

    Article  CAS  Google Scholar 

  26. **a, L.; Zheng, X.; Yang, R.; Yuan, X.; Jiang, M.; Zhuang, X. Robust nanocomposite films with high dielectric insulation from boron nitride nanosheet and aramid nanofiber. Fibers and Polymers 2023, 24, 1131–1138.

    Article  CAS  Google Scholar 

  27. Li, N.; Lu, Z.; Ji, X.; Ning, D.; E, S. Metal ion-assisted fabrication of aramid nanofilm with high strength and toughness for the dye separation. Compos. Commun. 2023, 43, 101702.

    Article  Google Scholar 

  28. Huang, F. W.; Yang, Q. C.; Jia, L. C.; Yan, D. X.; Li, Z. M. Aramid nanofiber assisted preparation of self-standing liquid metalbased films for ultrahigh electromagnetic interference shielding. Chem. Eng. J. 2021, 426, 131288.

    Article  CAS  Google Scholar 

  29. Zhou, G.; Yao, L.; **e, Z.; Kamran, U.; **e, J.; Zhang, F.; Park, S.-J.; Zhang, Y. Controllable construction of CNT-Interconnected liquid metal networks for thermal management. Compos. Part A: Appl. Sci. Manuf. 2023, 175, 107743.

    Article  CAS  Google Scholar 

  30. Jia, L. C.; **, Y. F.; Ren, J. W.; Zhao, L. H.; Yan, D. X.; Li, Z. M. Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J. Mater. Chem. C 2021, 9, 2904–2911.

    Article  CAS  Google Scholar 

  31. **e, J.; Zhou, G.; Sun, Y.; Zhang, F.; Kang, F.; Li, B.; Zhao, Y.; Zhang, Y.; Feng, W.; Zheng, Q. Multifunctional liquid metal-bridged graphite nanoplatelets/aramid nanofiber film for thermal management. Small 2024, 20, 2305163.

    Article  CAS  Google Scholar 

  32. Roh, S.; Williams, A. H.; Bang, R. S.; Stoyanov, S. D.; Velev, O. D. Soft dendritic microparticles with unusual adhesion and structuring properties. Nat. Mater. 2019, 18, 1315–1320.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, M.; Cao, K.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, D.; Wang, X.; Rao, W. Precise regulation of Ga-based liquid metal oxidation. Acc. Mater. Res. 2021, 2, 1093–1103.

    Article  CAS  Google Scholar 

  35. Zhao, G.; Cao, X.; Zhang, Q.; Deng, H.; Fu, Q. A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes. Mater. Today Phys. 2021, 21, 100483.

    Article  CAS  Google Scholar 

  36. **ong, L.; Wei, Y.; Chen, C.; Chen, X.; Fu, Q.; Deng, H. Thin lamellar films with enhanced mechanical properties for durable radiative cooling. Nat. Commun. 2023, 14, 6129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, C.; Wang, Y.; Gao, L.; Xu, Y.; Fan, Z.; Liu, X.; Ni, Y.; Xuan, S.; Deng, H.; Gong, X. High-performance liquid metal/polyborosiloxane elastomer toward thermally conductive applications. ACS Appl. Mater. Interfaces 2022, 14, 21564–21576.

    Article  CAS  PubMed  Google Scholar 

  38. Ford, M. J.; Ambulo, C. P.; Kent, T. A.; Markvicka, E. J.; Pan, C.; Malen, J.; Ware, T. H.; Majidi, C. A multifunctional shapemorphing elastomer with liquid metal inclusions. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 21438–21444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jeong, S. H.; Chen, S.; Huo, J.; Gamstedt, E. K.; Liu, J.; Zhang, S. L.; Zhang, Z. B.; Hjort, K.; Wu, Z. Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Sci. Rep. 2015, 5, 18257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bartlett, M. D.; Kazem, N.; Powell-Palm, M. J.; Huang, X.; Sun, W.; Malen, J. A.; Majidi, C. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 2143–2148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, D.; Liao, Y.; Song, Y.; Wang, S.; Wan, H.; Zeng, Y.; Yin, T.; Yang, W.; He, Z. A Super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 2020, 7, 2000177.

    Article  CAS  Google Scholar 

  42. Haque, A. B. M. T.; Tutika, R.; Byrum, R. L.; Bartlett, M. D. Programmable liquid metal microstructures for multifunctional soft thermal composites. Adv. Funct. Mater. 2020, 30, 2000832.

    Article  CAS  Google Scholar 

  43. Sargolzaeiaval, Y.; Ramesh, V. P.; Neumann, T. V.; Miles, R.; Dickey, M. D.; Öztürk, M. C. High thermal conductivity silicone elastomer doped with graphene nanoplatelets and eutectic GaIn liquid metal alloy. ECS J. Solid State Sci. Technol. 2019, 8, 357.

    Article  Google Scholar 

  44. **e, Z.; Xue, R.; Dou, Z.; **ao, L.; Li, Y.; Zhang, Q.; Fu, Q. Largely enhanced dielectric and thermal conductive properties of polypropylene composites by adding mixture of exfoliated boron nitride and liquid metal. Compos. Part A: Appl. Sci. Manuf. 2022, 161, 107081.

    Article  CAS  Google Scholar 

  45. Yi, S. Q.; Sun, H.; **, Y. F.; Zou, K. K.; Li, J.; Jia, L. C.; Yan, D. X.; Li, Z. M. CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites. Compos. Part B: Eng. 2022, 239, 109961.

    Article  Google Scholar 

  46. Luo, F.; Cui, W.; Zou, Y.; Li, H.; Qian, Q. Thermal conductivity and closed-loop recycling of bulk biphenyl epoxy composites with directional controllable thermal pathways. J. Mater. Chem. A 2023, 11, 15456–15465.

    Article  CAS  Google Scholar 

  47. Ran, L.; Ma, X.; Qiu, L.; Sun, F.; Zhao, L.; Yi, L.; Ji, X. Liquid metal assisted fabrication of MXene-based films: Toward superior electromagnetic interference shielding and thermal management. J. Colloid Interface Sci. 2023, 652, 705–717.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, C.; Wang, M.; Lin, X.; Tao, S.; Wang, X.; Chen, Y.; Liu, H.; Wang, Y.; Qi, H. Holocellulose nanofibrils assisted exfoliation of boron nitride nanosheets for thermal management nanocomposite films. Carbohydr. Polym. 2022, 291, 119578.

    Article  CAS  PubMed  Google Scholar 

  49. Lv, Z.; Kong, L.; Sun, P.; Lin, Y.; Wang, Y.; **ao, C.; Liu, X.; Zhang, X.; Zheng, K.; Tian, X. Dual-functional eco-friendly liquid metal/boron nitride/silk fibroin composite film with outstanding thermal conductivity and electromagnetic shielding efficiency. Compos. Commun. 2023, 39, 101565.

    Article  Google Scholar 

  50. Chen, S.; **ng, W.; Wang, H.; Cheng, W.; Lei, Z.; Zheng, F.; Tao, P.; Shang, W.; Fu, B.; Song, C.; Dickey, M. D.; Deng, T. A bottom-up approach to generate isotropic liquid metal network in polymer-enabled 3D thermal management. Chem. Eng. J. 2022, 439, 135674.

    Article  CAS  Google Scholar 

  51. Chen, Q.; Ma, Z.; Wang, M.; Wang, Z.; Feng, J.; Chevali, V.; Song, P. Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 2023, 16, 1362–1386.

    Article  CAS  Google Scholar 

  52. Chen, Q.; Huo, S.; Lu, Y.; Ding, M.; Feng, J.; Huang, G.; Xu, H.; Sun, Z.; Wang, Z.; Song, P. Heterostructured graphene@silica@iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites. Small 2024, DOI: https://doi.org/10.1002/smll.202310724.

  53. Chen, Q.; Liu, L.; Zhang, A.; Wang, W.; Wang, Z.; Zhang, J.; Feng, J.; Huo, S.; Zeng, X.; Song, P. An iron phenylphosphinate@graphene oxide nanohybrid enabled flame-retardant, mechanically reinforced, and thermally conductive epoxy nanocomposites. Chem. Eng. J. 2023, 454, 140424.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research & Development Plan (No. 2022YFA1205200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Deng.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3144_MOESM1_ESM.pdf

Electronic Supplementary Information: An Effective Approach for the Preparation of High Performance Thermal Conductive Polymer Composites Containing Liquid Metal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, XZ., Yuan, YF. et al. An Effective Approach for the Preparation of High Performance Thermal Conductive Polymer Composites Containing Liquid Metal. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3144-2

Keywords

Navigation