Log in

Recent Advances in Asymmetric Structural Composites for Excellent Electromagnetic Interference Shielding: A Review

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Since electromagnetic pollution is detrimental to human health and the environment, numerous efforts have been successively made to achieve excellent electromagnetic interference shielding effectiveness (EMI SE) via designing the hierarchical structures for electromagnetic interference (EMI) shielding polymer composites. Among the plentiful structures, the asymmetric structures are currently a hot spot, principally categorizing into multi-layered, porous, fibrous, and segregated asymmetric structures, which endows the high EMI shielding performance for polymer composites incorporated with magnetic, conductive, and/or dielectric micro/nano-fillers, due to the “absorption-reflection-reabsorption” shielding mechanism. Therefore, this review provides the retrospection and summary of the efforts with respect to abundant asymmetric structures and multifunctional micro/nano-fillers for enhancing EMI shielding properties, which is conducive to the booming development of polymeric EMI shielding materials for the promising prospect in modern electronics and 5-generation (5G) technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y.; Gu, J. A perspective for develo** polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

    Article  Google Scholar 

  2. Choi, Y. S.; Yoo, Y. H.; Kim, J. G.; Kim, S. H. A comparison of the corrosion resistance of Cu-Ni-stainless steel multilayers used for EMI shielding. Surf. Coat. Tech. 2006, 201, 3775–3782.

    Article  CAS  Google Scholar 

  3. Zhang, C.; Li, Y.; Kang, W.; Liu, X.; Wang, Q. Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMa 2021, 1, 127–147.

    Article  CAS  Google Scholar 

  4. Geetha, S.; Satheesh, K. K. K.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C. EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 2009, 112, 2073–2086.

    Article  CAS  Google Scholar 

  5. Liang, C.; Song, P.; Qiu, H.; Huang, F. Y.; Lu, Y.; Wang, L.; Kong, J.; Gu, J. Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide films. Compos. Part A: Appl. S. 2019, 124, 105512.

    Article  CAS  Google Scholar 

  6. Liang, C.; Qiu, H.; Zhang, Y.; Liu, Y.; Gu, J. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 2023, 68, 1938–1953.

    Article  CAS  Google Scholar 

  7. Song, W. L.; Cao, M. S.; Lu, M. M.; Bi, S.; Wang, C. Y.; Liu, J.; Yuan, J.; Fan, L. Z. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 2014, 66, 67–76.

    Article  CAS  Google Scholar 

  8. Onar, N.; Akşit, A. C.; Ebeoglugil, M. F.; Birlik, I.; Celik, E.; Ozdemir, I. Structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline and polypyrrole. J. Appl. Polym. Sci. 2009, 114, 2003–2010.

    Article  CAS  Google Scholar 

  9. Chen, Y. H.; Huang, C. Y.; Roan, M. L.; Lai, F. D.; Chen, K. N.; Yeh, J. T. The copper sulfide coating on polyacrylonitrile with a chelating agent of ethylenediaminetetraacetic acid by an electroless deposition method and its EMI shielding effectiveness. J. Appl. Polym. Sci. 2010, 115, 570–578.

    Article  CAS  Google Scholar 

  10. Sun, R.; Zhang, H. B.; Liu, J.; **e, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

    Article  Google Scholar 

  11. Li, Z.; Li, X.; Zong, Y.; Tan, G.; Sun, Y.; Lan, Y.; He, M.; Ren, Z.; Zheng, X. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 2017, 115, 493–502.

    Article  CAS  Google Scholar 

  12. Sankaran, S.; Deshmukh, K.; Ahamed, M. B.; Khadheer, P. S. K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A: Appl. S 2018, 114, 49–71.

    Article  CAS  Google Scholar 

  13. Wang, Y.; Gao, X.; Wu, X.; Luo, C. Facile synthesis of Mn3O4 hollow polyhedron wrapped by multiwalled carbon nanotubes as a high-efficiency microwave absorber. Ceram. Int. 2020, 46, 1560–1568.

    Article  CAS  Google Scholar 

  14. Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; Wei, R.; Subramania, A.; Guo, Z. Electromagnetic interference shielding polymers and nanocomposites—a review. Polym. Rev. 2019, 59, 280–337.

    Article  CAS  Google Scholar 

  15. Han, Y.; Ruan, K.; Gu, J. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  16. Zhou, H.; Deng, H.; Zhang, L.; Wu, Z.; Deng, S.; Yang, W.; Zhang, Q.; Chen, F.; Fu, Q. Toward multi-functional polymer composites through selectively distributing functional fillers. Compos. Part A: Appl. S 2016, 82, 20–33.

    Article  CAS  Google Scholar 

  17. Wen, C.; Zhao, B.; Liu, Y.; Xu, C.; Wu, Y.; Cheng, Y.; Liu, J.; Liu, Y.; Yang, Y.; Pan, H.; Zhang, J.; Wu, L.; Che, R. Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 2023, 33, 2214223.

    Article  CAS  Google Scholar 

  18. Sambyal, P.; Iqbal, A.; Hong, J.; Kim, M. K.; Kim, I. D.; Koo, C. M. Conductive MXene composites with liquid metal for high-performance electromagnetic interference shielding. Mater. Chem. Phys. 2023, 295, 127184.

    Article  CAS  Google Scholar 

  19. Wang, W. Y.; Ma, X.; Shao, Y. W.; Qi, X. D.; Yang, J. H.; Wang, Y. Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 2021, 9, 5033–5044.

    Article  CAS  Google Scholar 

  20. Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 2021, 177, 377–402.

    Article  CAS  Google Scholar 

  21. Li, N.; Huang, G. W.; Li, Y. Q.; **ao, H. M.; Feng, Q. P.; Hu, N.; Fu, S. Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

    Article  CAS  PubMed  Google Scholar 

  22. Zeng, S.; Li, X.; Li, M.; Zheng, J.; E, S.; Yang, W.; Zhao, B.; Guo, X.; Zhang, R. Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon 2019, 155, 34–43.

    Article  CAS  Google Scholar 

  23. Liang, C.; Song, P.; Qiu, H.; Zhang, Y.; Ma, X.; Qi, F.; Gu, H.; Kong, J.; Cao, D.; Gu, J. Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 2019, 11, 22590–22598.

    Article  CAS  PubMed  Google Scholar 

  24. Li, X. H.; Li, X.; Liao, K. N.; Min, P.; Liu, T.; Dasari, A.; Yu, Z. Z. Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 2016, 8, 33230–33239.

    Article  CAS  PubMed  Google Scholar 

  25. Al-Saleh, M. H.; Saadeh, W. H.; Sundararaj, U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 2013, 60, 146–156.

    Article  CAS  Google Scholar 

  26. Gu, J.; Ruan, K. Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nanomicro Lett. 2021, 13, 110.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, W.; Li, X.; Chang, W.; Wu, J.; Liu, P.; Wang, J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

    Article  CAS  Google Scholar 

  28. Yin, D.; Pan, Y.; Guo, Q.; Wang, Y.; Huang, J. Preparation and properties of flexible nanocellulose fibers/Ag nanoparticles composite films with excellent electromagnetic shielding performance. Appl. Phys. A-Mater. 2021, 128, 43.

    Article  Google Scholar 

  29. Sorgucu, U. Enhancing the electromagnetic shielding effectiveness of alumina (Al2O4) by coating with nano gold (AuNp). Opt. Mater. 2024, 148, 114795.

    Article  CAS  Google Scholar 

  30. Gu, T.; Zeng, Z.; Wu, S.; Sun, D. X.; Zhao, C. S.; Wang, Y. Poly(L-lactic acid)/graphene composite films with asymmetric sandwich structure for thermal management and electromagnetic interference shielding. Chem. Eng. J. 2023, 466, 143190.

    Article  CAS  Google Scholar 

  31. Lu, X.; Zheng, Y.; Yang, J.; Qu, J. Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices. Compos. Part B: Eng. 2020, 199, 108308.

    Article  CAS  Google Scholar 

  32. Wang, L.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B: Eng. 2019, 171, 111–118.

    Article  CAS  Google Scholar 

  33. Qin, F.; Brosseau, C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 2012, 111.

  34. Wu, T.; Liu, Y.; Zeng, X.; Cui, T.; Zhao, Y.; Li, Y.; Tong, G. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380.

    Article  CAS  PubMed  Google Scholar 

  35. González, M.; Pozuelo, J.; Baselga, J. Electromagnetic shielding materials in GHz range. Chem. Rec. 2018, 18, 1000–1009.

    Article  PubMed  Google Scholar 

  36. Singh, A. K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B: Eng. 2018, 149, 188–197.

    Article  CAS  Google Scholar 

  37. Yang, S.; Yang, P.; Ren, C.; Zhao, X.; Zhang, J. Millefeuille-inspired highly conducting polymer nanocomposites based on controllable layer-by-layer assembly strategy for durable and stable electromagnetic interference shielding. J. Colloid. Interf. Sci. 2022, 622, 97–108.

    Article  CAS  Google Scholar 

  38. Li, L.; Ma, Z.; Xu, P.; Zhou, B.; Li, Q.; Ma, J.; He, C.; Feng, Y.; Liu, C. Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding. Compos. Part A: Appl. S 2020, 139, 106134.

    Article  CAS  Google Scholar 

  39. He, W.; Chen, G.; Li, C.; Chen, X.; Chen, Y.; **ong, M.; Niu, X.; Zhu, M.; Li, X. Magnetically aligned CNT/magnetite heterogeneous composite membranes for electromagnetic wave shielding and heat dissipation. Mater. Res. Bull. 2022, 149, 111748.

    Article  CAS  Google Scholar 

  40. Tao, Q.; Men, C.; Li, C.; Cong, S.; Hu, D.; Li, Q. A Janus-structured Fe3O4-PDMS/CNT/Cu composite film for extreme-environmental electromagnetic interference shielding. Mater. Lett. 2022, 326, 132892.

    Article  CAS  Google Scholar 

  41. Hu, G.; Wu, C.; Wang, Q.; Dong, F.; **ong, Y. Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical properties. Chem. Eng. J. 2022, 447, 137537.

    Article  CAS  Google Scholar 

  42. Xu, Y.; Yang, Y.; Yan, D. X.; Duan, H.; Zhao, G.; Liu, Y. Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interfaces 2018, 10, 19143–19152.

    Article  CAS  PubMed  Google Scholar 

  43. Sheng, A.; Ren, W.; Yang, Y.; Yan, D. X.; Duan, H.; Zhao, G.; Liu, Y.; Li, Z. M. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorptiondominated electromagnetic interference shielding. Compos. Part A: Appl. S 2020, 129, 105692.

    Article  CAS  Google Scholar 

  44. Zhou, B.; Li, Q.; Xu, P.; Feng, Y.; Ma, J.; Liu, C.; Shen, C. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 2021, 13, 2378–2388.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, F.; Ren, P.; Guo, Z.; Wang, J.; Chen, Z.; Zong, Z.; Hu, J.; **, Y.; Ren, F. Asymmetric multilayered MXene-AgNWs/cellulose nanofiber composite films with antibacterial properties for high-efficiency electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 129, 181–189.

    Article  CAS  Google Scholar 

  46. Guo, Z.; Ren, P.; Lu, Z.; Hui, K.; Yang, J.; Zhang, Z.; Chen, Z.; **, Y.; Ren, F. Multifunctional CoFe2O4@MXene-AgNWs/cellulose nanofiber composite films with asymmetric layered architecture for high-efficiency electromagnetic interference shielding and remarkable thermal management capability. ACS Appl. Mater. Interfaces 2022, 14, 41468–41480.

    Article  CAS  PubMed  Google Scholar 

  47. Cao, W.; Ma, C.; Tan, S.; Ma, M.; Wan, P.; Chen, F. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nanomicro Lett. 2019, 11, 72.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lai, Z.; Cheng, K.; Zhao, T.; Zhu, P.; Liu, D.; Liang, X.; Sun, R. A facile process to fabricate copper/nickel-coated polyurethane composite with high electromagnetic interference shielding performance. Compos. Commun. 2023, 38, 101487.

    Article  Google Scholar 

  49. Yuan, M.; Fei, Y.; Zhang, H.; Qiu, B.; Shen, L.; He, X.; Liang, M.; Zhou, S.; Chen, Y.; Zou, H. Electromagnetic asymmetric films comprise metal organic frameworks derived porous carbon for absorption-dominated electromagnetic interference shielding. Compos. Part B: Eng. 2022, 233, 109622.

    Article  CAS  Google Scholar 

  50. Mai, T.; Guo, W. Y.; Wang, P. L.; Chen, L.; Qi, M. Y.; Liu, Q.; Ding, Y.; Ma, M. G. Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 2023, 464, 142517.

    Article  CAS  Google Scholar 

  51. Breuer, O.; Sundararaj, U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645.

    Article  CAS  Google Scholar 

  52. Gong, S.; Zhu, Z. H.; Meguid, S. A. Carbon nanotube agglomeration effect on piezoresistivity of polymer nanocomposites. Polymer 2014, 55, 5488–5499.

    Article  CAS  Google Scholar 

  53. Gong, S.; Zhu, Z. H.; Li, J.; Meguid, S. A. Modeling and characterization of carbon nanotube agglomeration effect on electrical conductivity of carbon nanotube polymer composites. J. Appl. Phys. 2014, 116, 194306.

    Article  Google Scholar 

  54. Chen, Y.; Zhang, H. B.; Yang, Y.; Wang, M.; Cao, A.; Yu, Z. Z. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 447–455.

    Article  CAS  Google Scholar 

  55. He, Q. M.; Tao, J. R.; Yang, Y.; Yang, D.; Zhang, K.; Fei, B.; Wang, M. Electric-magnetic-dielectric synergism and Salisbury screen effect in laminated polymer composites with multiwall carbon nanotube, nickel, and antimony trioxide for enhancing electromagnetic interference shielding. Compos. Part A: Appl. S. 2022, 156, 106901.

    Article  CAS  Google Scholar 

  56. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  CAS  PubMed  Google Scholar 

  57. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  PubMed  Google Scholar 

  58. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  CAS  PubMed  Google Scholar 

  59. Lin, J. H.; Lin, Z. I.; Pan, Y. J.; Huang, C. L.; Chen, C. K.; Lou, C. W. Polymer composites made of multi-walled carbon nanotubes and graphene nano-sheets: Effects of sandwich structures on their electromagnetic interference shielding effectiveness. Compos. Part B: Eng. 2016, 89, 424–431.

    Article  CAS  Google Scholar 

  60. Sefadi, J. S.; Luyt, A. S.; Pionteck, J.; Piana, F.; Gohs, U. Effect of surfactant and electron treatment on the electrical and thermal conductivity as well as thermal and mechanical properties of ethylene vinyl acetate/expanded graphite composites. J. Appl. Polym. Sci. 2015, 132, 42396.

    Article  Google Scholar 

  61. Konkena, B.; Vasudevan, S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett. 2012, 3, 867–872.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    Article  CAS  Google Scholar 

  63. Wang, J.; Song, T.; Ming, W.; Yele, M.; Chen, L.; Zhang, H.; Zhang, X.; Liang, B.; Wang, G. High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance. Nano Res. 2024, 17, 2061–2069.

    Article  CAS  Google Scholar 

  64. Gong, S.; Sheng, X.; Li, X.; Sheng, M.; Wu, H.; Lu, X.; Qu, J. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv. Funct. Mater. 2022, 32, 2200570.

    Article  CAS  Google Scholar 

  65. Li, M.; Sun, Y.; Feng, D.; Ruan, K.; Liu, X.; Gu, J. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

    Article  CAS  Google Scholar 

  66. Maleski, K.; Mochalin, V. N.; Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 2017, 29, 1632–1640.

    Article  CAS  Google Scholar 

  67. Velusamy, D. B.; Kim, R. H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S. H.; Song, G.; Cho, S. M.; Cho, S. H.; Hwang, I.; Lee, J.; Oh, K.; Choi, H.; Park, C. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 2015, 6, 8063.

    Article  PubMed  Google Scholar 

  68. Sundaram, H. S.; Han, X.; Nowinski, A. K.; Ella-Menye, J. R.; Wimbish, C.; Marek, P.; Senecal, K.; Jiang, S. One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces. ACS Appl. Mater. Interfaces 2014, 6, 6664–6671.

    Article  CAS  PubMed  Google Scholar 

  69. Carey, T.; Jones, C.; Le Moal, F.; Deganello, D.; Torrisi, F. Spray-coating thin films on three-dimensional surfaces for a semitransparent capacitive-touch device. ACS Appl. Mater. Interfaces 2018, 10, 19948–19956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 2010, 4, 5382–5388.

    Article  CAS  PubMed  Google Scholar 

  71. Yun, T.; Kim, J. S.; Shim, J.; Choi, D. S.; Lee, K. E.; Koo, S. H.; Kim, I.; Jung, H. J.; Yoo, H. W.; Jung, H. T.; Kim, S. O. Ultrafast interfacial self-assembly of 2D transition metal dichalcogenides monolayer films and their vertical and in-plane heterostructures. ACS Appl. Mater. Interfaces 2017, 9, 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, Y.; Ruan, K.; Guo, Y.; Gu, J. Recent advances of MXenes-based optical functional materials. Adv. Photon. Res. 2023, 4, 2300224.

    Article  Google Scholar 

  73. Liu, Q.; Zhang, Y.; Liu, Y.; Li, C.; Liu, Z.; Zhang, B.; Zhang, Q. Magnetic field-induced strategy for synergistic CI/Ti3C2Tx/PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance. J. Mater. Sci. Technol. 2022, 110, 246–259.

    Article  CAS  Google Scholar 

  74. Wang, Y.; Zhang, W.; Wu, X.; Luo, C.; Liang, T.; Yan, G. Metal-organic framework nanoparticles decorated with graphene: a high-performance electromagnetic wave absorber. J. Magn. Magn. Mater. 2016, 416, 226–230.

    Article  CAS  Google Scholar 

  75. Yang, D.; Zhang, C.; Biendicho, J. J.; Han, X.; Liang, Z.; Du, R.; Li, M.; Li, J.; Arbiol, J.; Llorca, J.; Zhou, Y.; Morante, J. R.; Cabot, A. ZnSe/N-doped carbon nanoreactor with multiple adsorption sites for stable lithium-sulfur batteries. ACS Nano 2020, 14, 15492–15504.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Y.; Yang, S.; Zhang, Q.; Ma, Z.; Guo, Y.; Shi, M.; Wu, H.; Guo, S. Constructing interconnected asymmetric conductive network in TPU fibrous film: achieving low-reflection electromagnetic interference shielding and surperior thermal conductivity. Carbon 2023, 206, 37–44.

    Article  CAS  Google Scholar 

  77. Zhang, Y.; Ma, Z.; Ruan, K.; Gu, J. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, M.; Jia, X.; He, D.; Ma, Y.; Cheng, Y.; Wang, J.; Li, Y.; Wang, C. Superhydrophobic and corrosion-resistant electrospun hybrid membrane for high-efficiency electromagnetic interference shielding. ACS Appl. Electron. Mater. 2021, 3, 2067–2078.

    Article  CAS  Google Scholar 

  79. Cui, C.; **ang, C.; Geng, L.; Lai, X.; Guo, R.; Zhang, Y.; **ao, H.; Lan, J.; Lin, S.; Jiang, S. Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. J. Alloy. Compd. 2019, 788, 1246–1255.

    Article  CAS  Google Scholar 

  80. Kim, M.; Kim, S.; Seong, Y. C.; Yang, K. H.; Choi, H. Multiwalled carbon nanotube buckypaper/polyacrylonitrile nanofiber composite membranes for electromagnetic interference shielding. ACS Appl. Nano Mater. 2021, 4, 729–738.

    Article  CAS  Google Scholar 

  81. Zhang, S.; Huang, X.; **ao, W.; Zhang, L.; Yao, H.; Wang, L.; Luo, J.; Gao, J. Polyvinylpyrrolidone assisted preparation of highly conductive, antioxidation, and durable nanofiber composite with an extremely high electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 2021, 13, 21865–21875.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, N.; Zhao, R.; He, D.; Ma, Y.; Qiu, J.; **, C.; Wang, C. Lightweight and flexible Ni-Co alloy nanoparticle-coated electrospun polymer nanofiber hybrid membranes for high-performance electromagnetic interference shielding. J. Alloy. Compd. 2019, 784, 244–255.

    Article  CAS  Google Scholar 

  83. Lee, S.; Park, J.; Kim, M. C.; Kim, M.; Park, P.; Yoon, I. J.; Nah, J. Polyvinylidene fluoride core-shell nanofiber membranes with highly conductive shells for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 25428–25437.

    Article  CAS  PubMed  Google Scholar 

  84. Guo, Y.; Qiu, H.; Ruan, K.; Wang, S.; Zhang, Y.; Gu, J. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 2022, 219, 109253.

    Article  CAS  Google Scholar 

  85. Deng, H.; Skipa, T.; Bilotti, E.; Zhang, R.; Lellinger, D.; Mezzo, L.; Fu, Q.; Alig, I.; Peijs, T. Preparation of high-performance conductive polymer fibers through morphological control of networks formed by nanofillers. Adv. Funct. Mater. 2010, 20, 1424–1432.

    Article  CAS  Google Scholar 

  86. Lv, Z.; Kong, L.; Sun, P.; Lin, Y.; Wang, Y.; **ao, C.; Liu, X.; Zhang, X.; Zheng, K.; Tian, X. Dual-functional eco-friendly liquid metal/boron nitride/silk fibroin composite film with outstanding thermal conductivity and electromagnetic shielding efficiency. Compos. Commun. 2023, 39, 101565.

    Article  Google Scholar 

  87. Jia, L.; Ding, X.; Sun, J.; Zhang, X.; Tian, X. A controllable gradient structure of hydrophobic composite fabric constructed by silver nanowires and polyvinylidene fluoride microspheres for electromagnetic interference shielding with low reflection. Compos. Part A: Appl. S 2022, 156, 106884.

    Article  CAS  Google Scholar 

  88. **ao, W.; Zhang, L.; Zhang, S.; Yan, J.; Zhang, G.; Gao, J. Electrically conductive and magnetic nanofiber composites with an asymmetric structure for efficient electromagnetic interference shielding. Colloid. Surf. A 2023, 675, 132063.

    Article  CAS  Google Scholar 

  89. Zhang, X.; Tang, J.; Zhong, Y.; Feng, Y.; Wei, X.; Li, M.; Wang, J. Asymmetric layered structural design with metal microtube conductive network for absorption-dominated electromagnetic interference shielding. Colloid. Surf. A 2022, 643, 128781.

    Article  CAS  Google Scholar 

  90. Chen, T.; Cai, J.; Cheng, X.; Cui, S.; Zhang, D.; Gong, D. Bio-inspired flexible versatile textiles for excellent absorptiondominated electromagnetic interference shielding, thermal management, and strain sensing. Chem. Eng. J. 2023, 477, 147116.

    Article  CAS  Google Scholar 

  91. Xue, B.; Li, Y.; Cheng, Z.; Yang, S.; **e, L.; Qin, S.; Zheng, Q. Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nanomicro Lett. 2021, 14, 16.

    PubMed  PubMed Central  Google Scholar 

  92. Zhang, J.; Zhu, D.; Zhang, S.; Cheng, H.; Chen, S.; Tang, R.; Hang, Z. H.; Zhang, T.; Zhang, X.; Yang, Z. Asymmetric electromagnetic shielding performance based on spatially controlled deposition of nickel nanoparticles on carbon nanotube sponge. Carbon 2022, 194, 290–296.

    Article  CAS  Google Scholar 

  93. Yang, J.; Liao, X.; Wang, G.; Chen, J.; Guo, F.; Tang, W.; Wang, W.; Yan, Z.; Li, G. Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 2020, 390, 124589.

    Article  CAS  Google Scholar 

  94. Yang, J.; Liao, X.; Wang, G.; Chen, J.; Song, P.; Tang, W.; Guo, F.; Liu, F.; Li, G. Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding. Compos. Sci. Technol. 2021, 206, 108663.

    Article  CAS  Google Scholar 

  95. Lei, Z.; Tian, D.; Liu, X.; Wei, J.; Rajavel, K.; Zhao, T.; Hu, Y.; Zhu, P.; Sun, R.; Wong, C. P. Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity. Chem. Eng. J. 2021, 424, 130365.

    Article  CAS  Google Scholar 

  96. Duan, H.; Zhu, H.; Gao, J.; Yan, D. X.; Dai, K.; Yang, Y.; Zhao, G.; Liu, Y.; Li, Z. M. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 2020, 8, 9146–9159.

    Article  CAS  Google Scholar 

  97. Gao, Q.; Zhang, G.; Zhang, Y.; Fan, X.; Wang, Z.; Zhang, S.; **ao, R.; Huang, F.; Shi, X.; Qin, J. Absorption dominated high-performance electromagnetic interference shielding epoxy/functionalized reduced graphene oxide/Ni-chains microcellular foam with asymmetric conductive structure. Compos. Sci. Technol. 2022, 223, 109419.

    Article  CAS  Google Scholar 

  98. Li, M.; Feng, Y.; Wang, J. Asymmetric conductive structure design for stabilized composites with absorption dominated ultra-efficient electromagnetic interference shielding performance. Compos. Sci. Technol. 2023, 236, 110006.

    Article  CAS  Google Scholar 

  99. Liu, G.; Yu, R.; Liu, D.; **a, Y.; Pei, X.; Wang, W.; Min, C.; Liu, S.; Shao, R.; Xu, Z. 3D-printed TiO2-Ti3C2Tx heterojunction/rGO/PDMS composites with gradient pore size for electromagnetic interference shielding and thermal management. Compos. Part A: Appl. S. 2022, 160, 107058.

    Article  CAS  Google Scholar 

  100. Zuo, T.; **e, C.; Wang, W.; Yu, D. Ti3C2Tx MXene-ferroferric oxide/carbon nanotubes/waterborne polyurethane-based asymmetric composite aerogels for absorption-dominated electromagnetic interference shielding. ACS Appl. Nano Mater. 2023, 6, 4716–4725.

    Article  CAS  Google Scholar 

  101. Pei, X.; Liu, G.; Shi, H.; Yu, R.; Wang, S.; Liu, S.; Min, C.; Song, J.; Shao, R.; Xu, Z. Directional electromagnetic interference shielding of asymmetric structure based on dual-needle 3D printing. Compos. Sci. Technol. 2023, 233, 109909.

    Article  CAS  Google Scholar 

  102. Yao, J.; Zhou, J.; Yang, F.; Peng, G.; Liu, Y.; Yao, Z.; Wu, F.; Zeng, H. Multi-functional and multi-scenario applications for MXene aerogels with synergistically enhanced asymmetric modules. Nano Res. 2024, 17, 3359–3368.

    Article  CAS  Google Scholar 

  103. Zuo, T.; Wang, W.; Yu, D. MXene/Ag@ZnO/WPU/Melemine gradient composite foams prepared by a unidirectional evaporation approach for absorption-dominated electromagnetic interference shielding. J. Alloy. Compd. 2023, 966, 171644.

    Article  CAS  Google Scholar 

  104. Zhang, Y. P.; Zhou, C. G.; Sun, W. J.; Wang, T.; Jia, L. C.; Yan, D. X.; Li, Z. M. Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Compos. Sci. Technol. 2020, 197, 108253.

    Article  CAS  Google Scholar 

  105. Jia, L. C.; Jia, X. X.; Sun, W. J.; Zhang, Y. P.; Xu, L.; Yan, D. X.; Su, H. J.; Li, Z. M. Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 53230–53238.

    Article  CAS  PubMed  Google Scholar 

  106. Li, Y.; Tian, X.; Gao, S. P.; **g, L.; Li, K.; Yang, H.; Fu, F.; Lee, J. Y.; Guo, Y. X.; Ho, J. S.; Chen, P. Y. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 2020, 30, 1907451.

    Article  CAS  Google Scholar 

  107. Zhan, Y.; Wang, J.; Zhang, K.; Li, Y.; Meng, Y.; Yan, N.; Wei, W.; Peng, F.; **a, H. Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 2018, 344, 184–193.

    Article  CAS  Google Scholar 

  108. Yu, W. C.; Wang, T.; Liu, Y. H.; Wang, Z. G.; Xu, L.; Tang, J. H.; Dai, K.; Duan, H. J.; Xu, J. Z.; Li, Z. M. Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chem. Eng. J. 2020, 393, 124644.

    Article  CAS  Google Scholar 

  109. Sun, B.; Sun, S.; He, P.; Mi, H. Y.; Dong, B.; Liu, C.; Shen, C. Asymmetric layered structural design with segregated conductive network for absorption-dominated high-performance electromagnetic interference shielding. Chem. Eng. J. 2021, 416, 129083.

    Article  CAS  Google Scholar 

  110. Liu, F.; Wei, Z.; Hu, X.; Cai, Y.; Chen, Z.; Yang, C.; Zhan, Y.; **a, H. Asymmetric segregated network design of ultralight and thermal insulating polymer composite foams for green electromagnetic interference shielding. Compos. Commun. 2023, 38, 101492.

    Article  Google Scholar 

  111. Wang, Z.; Wang, S.; Zhang, K.; Shen, Z.; Yu, E.; Zheng, S. Y.; Liu, S.; Yang, J. Heterostructured composite foam with highly efficient absorption-dominant EMI shielding capability and mechanical robustness. Compos. Commun. 2023, 40, 101603.

    Article  Google Scholar 

  112. Wu, B.; Liu, R.; Yang, Y.; Zhu, H.; Yu, Y.; Huang, J.; Li, Y. Asymmetrically structured polyvinylidene fluoride composite for directional high absorbed electromagnetic interference shielding. J. Appl. Polym. Sci. 2023, 140, 53340.

    Article  Google Scholar 

  113. Liang, C.; Gu, Z.; Zhang, Y.; Ma, Z.; Qiu, H.; Gu, J. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 2021, 13, 181.

    Article  CAS  Google Scholar 

  114. Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chinese J. Polym. Sci. 2022, 40, 248–255.

    Article  CAS  Google Scholar 

  115. Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Inter. 2020, 12, 8704–8712.

    Article  CAS  Google Scholar 

  116. Yang, J.; Wang, H.; Zhang, Y.; Zhang, H.; Gu, J. Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 2023, 16, 31.

    Article  Google Scholar 

  117. Wang, L.; Ma, Z.; Zhang, Y.; Chen, L.; Cao, D.; Gu, J. Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 2021, 1, 413–431.

    Article  CAS  Google Scholar 

  118. Wang, T.; Kong, W. W.; Yu, W. C.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 162.

    Article  CAS  Google Scholar 

  119. Yang, J.; Chen, Y.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y.; Gao, H.; **a, Y.; Zhang, H.; Li, X.; Wang, T. Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly(butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093.

    Article  CAS  Google Scholar 

  120. Gong, K.; Peng, Y.; Liu, A.; Qi, S.; Qiu, H. Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A: Appl. S 2024, 176, 107857.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52363004, 51963003 and 52263003), Guizhou Provincial Science and Technology Projects (Nos. ZK [2022] Maj019 and ZK [2023]-Nor160), and Guizhou Province High-level Innovative Talent Selection and Training Program (No. GCC2022-046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan **e or Qiang Zheng.

Ethics declarations

The authors declare no interest conflict.

Additional information

Biographies

Lan **e is a professor and the group leader of Material Big data and functional materials at Guizhou University. She received her Ph.D. from Sichuan University. At present, she has published more than 60 papers in international TOP journals such as Nano-Micro Letters. She has presided over more than 10 projects such as the National Natural Science Foundation and key basic projects of Guizhou Province. Her research focuses on big data technology, artificial intelligence, material big data and functional materials research.

Qiang Zheng is a professor and doctoral supervisor at Zhejiang University. He is a special professor of the “Changjiang Scholars Award Program” of the Ministry of Education, winner of the National Outstanding Young People Science Fund, and an expert enjoying special government subsidies. He presided over more than 40 projects such as the national key basic research and development plan (973 Plan). More than 640 academic papers have been included in SCI. His research focuses on polymer rheology, structure and properties of multi-component polymer materials, and the study of polymer composites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xue, B., **e, L. et al. Recent Advances in Asymmetric Structural Composites for Excellent Electromagnetic Interference Shielding: A Review. Chin J Polym Sci 42, 693–710 (2024). https://doi.org/10.1007/s10118-024-3112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3112-x

Keywords

Navigation