Log in

Electrostatic Encapsulation of Cobalt Ions into Crystalline Framework Derived Polymer Aerogel: Ultra-light, Pressure Resistant, Hydrophobic, Photothermal Conversion, Heat Insulation and Infrared Stealth

  • Research Article
  • Special Issue: Functional Polymer Materials
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A variety of electromagnetic wave absorption materials (EMWAs) have been reported, but the integration of powder materials and multifunctional devices should be investigated in-depth to adapt to practical demands. Herein, carbon-coated cobalt composites were prepared by adsorbing magnetic metal cations into an anionic crystalline framework through an electrostatic encapsulate process. Excellent reflection loss (RLmin) of −40.49 dB and effective absorption bandwidth (EAB) of 5.36 GHz (RL<−10 dB, 10.4–15.76 GHz) was achieved with an optimal radar cross section (RCS) reduction of 34.9 dB·m2 for the sample tested. For commercial applications, Co@CN-4 was integrated into sodium carboxymethyl cellulose (CMC) aerogel to create an ultra-lightweight composite aerogel that is compressive resistant and heat-holding while also having photothermal conversion capabilities.The hydrophobic modification makes it more widely useful. This study provides a new strategy for EWAMs to integrate versatility and improve their application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data requiring special software tools to open: The related data (DOI: https://doi.org/10.57760/sciencedb.16402; CSTR: 31253.11.Sciencedb.16402) of this paper can be accessed in the Science Date Bank database https://www.scidb.cn/s/VrIzQ3, and the software for opening the data is Origin 2021.

References

  1. Hou, Y.; Liu, K.; Chen, J.; Wang, B.; He, X.; Li, D.; Wei, S.; Li, B.; Han, Q. Bimetallic MOFs/MXene derived CoNi@C@Ti3C2Tx/TiO2 nanocomposites for high-efficiency electromagnetic wave absorption. Carbon 2024, 216, 118587.

    Article  CAS  Google Scholar 

  2. Liu, L.; Wen, B. A bead-string Co/C@BNNT nanocomposite: preparation and tunable electromagnetic wave absorption performance. CrystEngComm 2023, 25, 1657–1668.

    Article  CAS  Google Scholar 

  3. Gao, Z.; Lan, D.; Zhang, L.; Wu, H. Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2106677.

    Article  CAS  Google Scholar 

  4. Su, J.; Nie, Z.; Feng, Y.; Hu, X.; Li, H.; Zhao, Z.; Zan, S.; Qi, S. Hollow core–shell structure Co/C@MoSe2 composites for high-performance microwave absorption. Compos. Part A: Appl. Sci. Manuf. 2022, 162, 107140.

    Article  CAS  Google Scholar 

  5. Ren, X.; Song, Y.; Gao, Z.; Wu, Y.; Jia, Z.; Wu, G. Rational manipulation of composition and construction toward Zn/Co bimetal hybrids for electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 134, 254–261.

    Article  CAS  Google Scholar 

  6. Yang, Y.; Qian, C.; Hu, P.; Yang, W.; He, Z.; Dong, Y.; Fu, Y.; Zhu, Y. Nitrogen-doped core-shell Fe/Fe3C@C nanocomposites for electromagnetic wave absorption. J. Mater. Sci. Mater. Electron. 2023, 34, 1847.

    Article  CAS  Google Scholar 

  7. Liu, P.; Gao, S.; Wang, Y.; Huang, Y.; He, W.; Huang, W.; Luo, J. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

    Article  CAS  Google Scholar 

  8. Ban, Q.; Li, L.; Li, Y.; Liu, H.; Zheng, Y.; Qin, Y.; Zhang, H.; Kong, J. Polymer self-assembly guided heterogeneous structure engineering towards high-performance low-frequency electromagnetic wave absorption. J. Colloid Interface Sci. 2023, 650, 1434–1445.

    Article  CAS  PubMed  Google Scholar 

  9. Ban, Q.; Li, L.; Liu, H.; Zhou, D.; Zheng, Y.; Qin, Y.; **ng, R.; Kong, J. Polymerization-induced assembly-etching engineering to hollow Co@N-doped carbon microcages for superior electromagnetic wave absorption. Carbon 2023, 215, 118506.

    Article  CAS  Google Scholar 

  10. Zhang, Y.; Li, Y.; Liu, H.; Zhang, L.; Zhang, Y.; Xu, C.; Gong, C. Biomass-derived heterogeneous RGO/Ni/C composite with hollow structure for high-efficiency electromagnetic wave absorption. Mater. Today Phys. 2023, 31, 100966.

    Article  CAS  Google Scholar 

  11. Wang, Y.; Hui, Z.; Hao, G.; Zhang, S.; Ke, X.; Yan, H. Structural and component optimization of conventional magnetic material Co to synthesis dendritic-like FeCo and rose-like CoNi toward high-performance electromagnetic wave absorption. J. Mater. Res. Technol. 2022, 19, 418–430.

    Article  CAS  Google Scholar 

  12. Yang, G.; Wen, B.; Wang, Y.; Zhou, X.; Liu, X.; Ding, S. In situ construction of ZIF-67 derived Mo2C@cobalt/carbon composites toward excellent electromagnetic wave absorption properties. Nanotechnology 2023, 34, 185704.

    Article  Google Scholar 

  13. Chen, H.; Chu, F; Zhuang, H; Wang, L.; Ye, Z.; Dong, W.; **e, Z.; **e, A. Hyper-crosslinked conjugated microporous polymers with increased micropores promotes confining polymerization for electromagnetic absorption application. Chinese J. Polym. Sci. 2023, 41, 1305–1316.

    Article  CAS  Google Scholar 

  14. Han, Y.; He, M.; Hu, J.; Liu, P.; Liu, Z.; Ma, Z.; Ju, W.; Gu, J., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

    Article  CAS  Google Scholar 

  15. Yu, G.; Ye, M.; Han, A.; Liu, Q.; Su, Y.; Chen, C. Optimization of electromagnetic wave absorption properties of CoNi/MoSe2 composites with 3D flower-like by controlling the Co/Ni molar ratio. J. Alloys Compd. 2023, 939, 168592.

    Article  CAS  Google Scholar 

  16. Shu, Y.; Zhao, T.; Abdul, J.; Li, X.; Yang, L.; Luo, F. High-efficient electromagnetic wave absorption of coral-like Co/CoO/RGO hybrid aerogels with good hydrophobic and thermal insulation properties. Chem. Eng. J. 2023, 471, 144535.

    Article  CAS  Google Scholar 

  17. Jiang, C.; Wen, B. Electromagnetic wave absorption performance and mechanism of Co/C composites derived from different cobalt source ZIF-67: a comparative study. J. Mater. Sci. Mater. Electron. 2022, 33, 5730–5749.

    Article  CAS  Google Scholar 

  18. Wang, J.; Wang, Y.; Jiang, R.; Chen, S.; He, Q.; Wu, G. Self-assembly of submillimeter porous structure on metal-organic framework to construct heterogeneous interface for controlling microwave absorption. Mater. Today Phys. 2023, 35, 101126.

    Article  CAS  Google Scholar 

  19. Lin, J.; Qiao, J.; Tian, H.; Li, L.; Liu, W.; Wu, L.; Liu, J.; Zeng, Z. Ultralight, hierarchical metal-organic framework derivative/graphene hybrid aerogel for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 177.

    Article  CAS  Google Scholar 

  20. Zeng, X.; Xu, L.; Deng, T.; Wang, Y.; Xu, W.; Zhang, W. Anionic MOFs embedded in anion-exchange membranes for the separation of lithium/magnesium cations ACS Sustainable Chem. Eng. 2023, 11, 12877–12887

    Article  CAS  Google Scholar 

  21. Ouyang, Y.; Gong, W.; Zhang, Q.; Wang, J.; Guo, S.; **ao, Y.; Li, D.; Wang, C.; Sun, X.; Wang, C.; Huang, S. Bilayer zwitterionic metalorganic framework for selective all-solid-state superionic conduction in lithium metal batteries. Adv. Mater. 2023, 35, 2304685

    Article  CAS  Google Scholar 

  22. More, Y. D.; Mollick, S.; Saurabh, S.; Fajal, S.; Tricarico, M.; Dutta, S.; Shirolkar, M. M.; Mandal, W.; Tan, J.C.; Ghosh, S. K. Nanotrap grafted anionic MOF for superior uranium extraction from seawater. Small 2024, 20, 2302014.

    Article  CAS  Google Scholar 

  23. Li, K.; Han, L.; Zhang, J.; Cheng, J. Metal-organic framework derived multidimensional carbon/multifluorination epoxy nanocomposite with electromagnetic wave absorption, environmentally adaptive, and blue energy harvesting. Small Struct. 2023, 4, 2300210.

    Article  CAS  Google Scholar 

  24. Rehman, S. U.; Xu, S.; Li, Z.; Tao, T.; Zhang, J.; **a, H.; Xu, H.; Ma, K.; Wang, J. Hierarchical-bioinspired MOFs enhanced electromagnetic wave absorption. Small 2024, 20, 2306466.

    Article  CAS  Google Scholar 

  25. Zhang, X.; Tian, X.L.; Qin, Y.; Qiao, J.; Pan, F.; Wu, N.; Wang, C.; Zhao, S.; Liu, W.; Cui, J.; Qian, Z.; Zhao, M.; Liu, J.; Zeng, Z. Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 2023, 17, 12510–12518.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C.; Shan, Z.; Tao, S.; **e, A.; Yang, H.; Su, J.; Horke, S.; Kitagawa, S.; Zhang, G. Atomic tuning in electrically conducting bimetallic organic frameworks for controllable electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2305082.

    Article  CAS  Google Scholar 

  27. Zhang, Y.; Liu, X.; Guo, Z.; Jia, C.; Lu, F.; Jia, Z.; Wu, G. MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 176, 167–175.

    Article  Google Scholar 

  28. Xu, Y.; Huang, Y.; Zhao, J.; Han, X.; Chai, C.; Ma, H. Facile synthesis of Co/La-MOF/Ti3C2Tx nanocomposite for electromagnetic wave absorption. J. Alloys Compd. 2023, 960, 170829.

    Article  CAS  Google Scholar 

  29. Liu, Z.; Wu, C.; Wang, K.; Wang, Y.; **an, G.; Zhu, Z.; Liu, Y.; Kong, L. Self-assembled Co nanosheet/Ti3C2Tx composites with tunable electromagnetic wave absorption. ACS Appl. Nano Mater. 2023, 6, 1339–1346.

    Article  CAS  Google Scholar 

  30. Yang, J.; Chan, K.; Venkatesan, H.; Kim, E.; Adegun, M. H.; Lee, J. H.; Shen, X.; Kim, J. K. Superinsulating BNNS/PVA composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett. 2022, 14, 54.

    Article  CAS  Google Scholar 

  31. Wang, L.; Ma, Z.; Qiu, H.; Zhang, Y.; Yu, Z.; Gu, J. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

    Article  CAS  Google Scholar 

  32. Rao, L.; Wang, L.; Yang, C.; Zhang, R.; Zhang, J.; Liang, C.; Che, R. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2213258.

    Article  CAS  Google Scholar 

  33. Yu, M.; Li, J.; Wang, L., KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem. Eng. J. 2017, 310, 300–306.

    Article  CAS  Google Scholar 

  34. Ren, J.; **, F.; Bao, Y.; Yu, J.; Li, X.; Li, S.; Cheng, Y.; Zhang, F. Microcapsule preparation of melamine and orange peel charcoal encapsulated by sodium alginate and its effect on combustion performance of epoxy resins. J. Therm. Anal. Calorim. 2023, 148, 9489–9500.

    Article  CAS  Google Scholar 

  35. Jia, L.; Huang, W.; Zhao, Y.; Wen, S.; Yu, Z.; Zhang, Z. Ultra-light polylactic acid/combination composite foam: a fully biodegradable flame retardant material. Int. J. Biol. Macromol. 2022, 220, 754–765.

    Article  CAS  PubMed  Google Scholar 

  36. Long, Y.; Zhang, Z.; Sun, K.; Wang, C.; Zeng, N.; Gao, B.; Tang, X.; Qi, X.; Fan, R. Enhanced electromagnetic wave absorption performance of hematite@carbon nanotubes/polyacrylamide hydrogel composites with good flexibility and biocompatibility. Adv. Compos. Hybrid Mater. 2023, 6, 173.

    Article  CAS  Google Scholar 

  37. Sun, Y.; Wang, F.; Zhang, J. Synthesis of anionic metal-organic zeolites for selective gas adsorption and ion exchange. Inorg. Chem. 2019, 58, 4076–4079.

    Article  CAS  PubMed  Google Scholar 

  38. Yan, M.; Cheng, X.; Gong, L.; Lun, Z.; He, P.; Shi, L.; Liu, C.; Pan, Y. Growth mechanism and structure regulation of super-elastic SiC aerogels for thermal insulation and electromagnetic wave absorption. Chem. Eng. J. 2023, 475, 146417.

    Article  CAS  Google Scholar 

  39. Cheng, Y.; Hu, L.; Zhang, K.; Fan, J. Facile synthesis of hollow SiC/C nanospheres for high-performance electromagnetic wave absorption. Carbon 2023, 215, 118391.

    Article  CAS  Google Scholar 

  40. Wang, W.; Wen, J.; Hou, X.; Zhang, Y.; Ye, W.; Wang, S.; Zhao, R.; Xue, W. Enhanced microwave absorption of superlattice C-CuS/MXene composites with rich heterogeneous interfaces and conductive network synergies. Mater. Today Phys. 2023, 35, 101108.

    Article  CAS  Google Scholar 

  41. Cai, Z.; Ma, Y.; Zhao, K.; Yun, M.; Wang, X.; Tong, Z.; Wang, M.; Suhr, J.; **ao, L.; Jia, S.; Chen, X. Ti3C2Tx MXene/graphene oxide/Co3O4 nanorods aerogels with tunable and broadband electromagnetic wave absorption. Chem. Eng. J. 2023, 462, 142042.

    Article  CAS  Google Scholar 

  42. Gu, W.; Sheng, J.; Huang, Q.; Wang, G.; Chen, J.; Ji, G. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 2021, 13, 102.

    Article  CAS  Google Scholar 

  43. Liu, Q., Cao, Q., Bi, H., Liang, C., Yuan, K., She, W., Yang, Y., Che, R. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  CAS  PubMed  Google Scholar 

  44. Ye, W.; Wang, S.; Hou, X.; Wang, W.; Zhang, Z.; Fang, Y.; Zhao, R.; Xue, W. Construction of Bi2S3/rGO heterointerfaces for enhanced and tunetable electromagnetic wave absorption. Compos. Commun. 2023, 37, 101433.

    Article  Google Scholar 

  45. Wu, L.; Gao, H.; Guo, R.; Li, W.; Wu, F.; Tao, S.; Zhu, X.; **e, A. MnO2 intercalation-guided impedance tuning of carbon/polypyrrole double conductive layers for electromagnetic wave absorption. Chem. Eng. J. 2023, 460, 141749.

    Article  CAS  Google Scholar 

  46. Wu, Z.; Pei, K.; **ng, L.; Yu, X.; You, W. B.; Che, R. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

    Article  Google Scholar 

  47. Li, F.; Bi, Z.; Kimura, H.; Li, H.; Liu, L.; **e, X.; Zhang, X.; Wang, J.; Sun, X.; Ma, Z.; Du, W.; Hou, C. Energy- and cost-efficient salt-assisted synthesis of nitrogen-doped porous carbon matrix decorated with nickel nanoparticles for superior electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 133.

    Article  CAS  Google Scholar 

  48. Ge, C.; Xu, D.; Du, H.; Zhang, X.; Song, Z.; Zhao, H.; Chen, Z.; Song, B.; Shen, Z.; Gao, C.; Yan, G.; Xu, W.; Fang, J. All-in-one evaporators for efficient solar-driven simultaneous collection of water and electricity. Small Methods 2023, 7, 2300227.

    Article  CAS  Google Scholar 

  49. Shao, C.; Guo, B.; Lu, B.; Yu, J.; Kong, H.; Wang, B.; Ding, M.; Li, C. PDI-based organic small molecule regulated by inter/intramolecular interactions for efficient solar vapor generation. Small 2023, 19, 2305856.

    Article  CAS  Google Scholar 

  50. Li, Y., Shi, Y., Wang, H., Liu, T., Zheng, X., Gao, S., Lu, J. Recent advances in carbon-based materials for solar-driven interfacial photothermal conversion water evaporation: assemblies, structures, applications, and prospective. Carbon Energy 2023, 5, e331.

    Article  CAS  Google Scholar 

  51. Tang, L.; Tang, Y.; Zhang, J.; Lin, Y.; Kong, J.; Zhou, K.; Gu, J. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci. Bull. 2022, 67, 2196–2207.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22001156 and 22301239), the Youth Talent Fund of University Association for Science and Technology in Shaanxi, China (No. 20210602), International Cooperation Key Project of Science and Technology Department of Shaanxi, China (No. 2022KWZ-06), the research project of Science and Technology Department of Shaanxi Province (No. 2021JQ-533), the Research Program of the Shaanxi Provincial Department of Education (No. 23JK0596), the open Foundation of **’an Key Laboratory of Functional Supramolecular Structure and Materials (No. CFZKFKT23003) and Shaanxi Provincial Department of Education service local special project, industrialization cultivation project (No. 23JC007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Huan Huang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3111_MOESM1_ESM.pdf

Electrostatic Encapsulation of Cobalt Ions into Crystalline Framework Derived Polymer Aerogel: Ultra-light, Pressure Resistant, Hydrophobic, Photothermal Conversion, Heat Insulation and Infrared Stealth

Supplementary material, approximately 12.8 MB.

Supplementary material, approximately 12.6 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, YF., Tang, JL., Song, M. et al. Electrostatic Encapsulation of Cobalt Ions into Crystalline Framework Derived Polymer Aerogel: Ultra-light, Pressure Resistant, Hydrophobic, Photothermal Conversion, Heat Insulation and Infrared Stealth. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3111-y

Keywords

Navigation