Log in

Automated Identification of Ordered Phases for Simulation Studies of Block Copolymers

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In unit cell simulations, identification of ordered phases in block copolymers (BCPs) is a tedious and time-consuming task, impeding the advancement of more streamlined and potentially automated research workflows. In this study, we propose a scattering-based automated identification strategy (SAIS) for characterization and identification of ordered phases of BCPs based on their computed scattering patterns. Our approach leverages the scattering theory of perfect crystals to efficiently compute the scattering patterns of periodic morphologies in a unit cell. In the first stage of the SAIS, phases are identified by comparing reflection conditions at a sequence of Miller indices. To confirm or refine the identification results of the first stage, the second stage of the SAIS introduces a tailored residual between the test phase and each of the known candidate phases. Furthermore, our strategy incorporates a variance-like criterion to distinguish background species, enabling its extension to multi-species BCP systems. It has been demonstrated that our strategy achieves exceptional accuracy and robustness while requiring minimal computational resources. Additionally, the approach allows for real-time expansion and improvement to the candidate phase library, facilitating the development of automated research workflows for designing specific ordered structures and discovering new ordered phases in BCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The supplementary information and relevant data associated with this article can be found in the provided database from Data Repository of China Association for Science and Technology (DOI: https://doi.org/10.1007/s10118-024-3084-x). These files have also been uploaded on GitHub for reference, accessible at the following URL: https://github.com/DShKM118/Supporting-Infomation-for-SAIS. Should you have any inquiries, please feel free to contact the author via email at 22210440033@fudan.miedu.cn, and I will be pleased to address any questions you may have.

References

  1. Bates, F. S.; Fredrickson, G. H. Block copolymers—designer soft materials. Phys. Today 1999, 52, 32–38.

    Article  CAS  Google Scholar 

  2. Cummins, C.; Lundy, R.; Walsh, J. J.; Ponsinet, V.; Fleury, G.; Morris, M. A. Enabling future nanomanufacturing through block copolymer self-assembly: a review. Nano Today 2020, 35, 100936.

    Article  CAS  Google Scholar 

  3. Pester, C. W.; Liedel, C.; Ruppel, M.; Böker, A. Block copolymers in electric fields. Prog. Polym. Sci. 2017, 64, 182–214.

    Article  CAS  Google Scholar 

  4. Shao, G.; Liu, Y.; Cao, R.; Han, G.; Yuan, B.; Zhang, W. Thermoresponsive block copolymers: assembly and application. Polym. Chem. 2023, 14, 1863–1880.

    Article  CAS  Google Scholar 

  5. Fan, X.; Zhao, Y.; Xu, W.; Li, L. Linear-dendritic block copolymer for drug and gene delivery. Mate. Sci. Eng. C 2016, 62, 943–959.

    Article  CAS  Google Scholar 

  6. Matsen, M. W.; Schick, M. Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett. 1994, 72, 2660–2663.

    Article  CAS  PubMed  Google Scholar 

  7. Dorfman, K. D. Frnnk-Kasper phases in block polymers. Macromolecules 2021, 54, 10251–10270.

    Article  CAS  Google Scholar 

  8. Chen, M.; Huang, Y.; Chen, C.; Chen, H. Accessing the FrankKasper σ phase of block copolymer with small conformational asymmetry via selective solvent solubilization in the micellar corona. Macromolecules 2022, 55, 10812–10820.

    Article  CAS  Google Scholar 

  9. Li, W.; Liu, Y. Simplicity in mean-field phase behavior of two-component miktoarm star copolymers. J. of Chem. Phys. 2021, 154, 014903–014903.

    Article  CAS  Google Scholar 

  10. Han, L.; Che, S. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv. Materi. 2018, 30, 1705708.

    Article  Google Scholar 

  11. Ha, S.; La, Y.; Kim, K. T. Polymer cubosomes: infinite cubic mazes and possibilities. Acc. of Chem. Res. 2020, 53, 620–631.

    Article  CAS  Google Scholar 

  12. Feng, X.; Burke, C. J.; Zhuo, M.; Guo, H.; Yang, K.; Reddy, A.; Prasad, I.; Ho, R.; Avgeropoulos, A.; Grason, G. M.; Thomas, E. L. Seeing mesoatomic distortions in softmatter crystals of a double-gyroid block copolymer. Nature 2019, 575, 175–179.

    Article  CAS  PubMed  Google Scholar 

  13. Hamley, I. W. in Developments in block copolymer science and technology. Wiley, 2004.

  14. Fredrickson, G. H. in The Equilibrium Theory of Inhomogeneous Polymers. Oxford University Press, 2005.

  15. Matsen, M. W. The standard Gaussian model for block copolymer melts. J. Phys. Condensed Matter 2002, 14, R21.

    Article  CAS  Google Scholar 

  16. Epps, T. H.; Cochran, E. W.; Hardy, C. M.; Bailey, T. S.; Waletzko, R. S.; Bates, F. S. Network phases in ABC triblock copolymers. Macromolecules 2004, 37, 7085–7088.

    Article  CAS  Google Scholar 

  17. Matsen, M. W. Effect of Architecture on the phase behavior of ABtype block copolymer melts. Maoromeluceles 2012, 45, 2161–2165.

    Article  CAS  Google Scholar 

  18. Lee, S.; Bluemle, M. J.; Bates, F. S. Discovery of a Frank-Kasper σ phase in sphere-forming block copolymer melts. Science 2010, 330, 349–353.

    Article  CAS  PubMed  Google Scholar 

  19. Jung, H. Y.; Park, M. J. Thermodynamics and phase behavior of acid-tethered block copolymers with ionic liquids. Soft Matter 2016, 13, 250–257.

    Article  PubMed  Google Scholar 

  20. Schulze, M. W.; Lequieu, J.; Barbon, S. M.; Lewis, R. W.; Delaney, K. T.; Anastasaki, A.; Hawker, C. J.; Fredrickson, G. H.; Bates, C. M. Stability of the A15 phase in diblock copolymer melts. Proc. Nat. Acad. Sci. U.S.A. 2019, 116, 13194–13199.

    Article  Google Scholar 

  21. **e, Q.; Qiang, Y.; Li, W. Regulate the stability of gyroids of ABC-type multiblock copolymers by controlling the packing frustration. ACS Macro Lett. 2020, 9, 278–283.

    Article  CAS  PubMed  Google Scholar 

  22. Dong, Q.; Li, W. Effect of molecular asymmetry on the formation of asymmetric nanostructures in ABC-type block copolymers. Macromolecules 2021, 54, 203–213.

    Article  CAS  Google Scholar 

  23. **e, Q.; Qiang, Y.; Li, W. Single gyroid self-assembled by linear BABAB pentablock copolymer. ACS Macro Lett. 2022, 11, 205–209.

    Article  CAS  PubMed  Google Scholar 

  24. Arora, A.; Morse, D. C.; Bates, F. S.; Dorfman, K. D. Accelerating self-consistent field theory of block polymers in a variable unit cell. J. Chem. Phys. 2017, 146, 244902.

    Article  PubMed  Google Scholar 

  25. Paradiso, S. P.; Delaney, K. T.; Fredrickson, G. H. Swarm intelligence platform for multiblock polymer inverse formulation design. ACS Macro Lett. 2016, 5, 972–976.

    Article  CAS  PubMed  Google Scholar 

  26. Dong, Q.; Gong, X.; Yuan, K.; Jiang, Y.; Zhang, L.; Li, W. Inverse design of complex block copolymers for exotic self-assembled structures based on bayesian optimization. ACS Macro Lett. 2023, 12, 401–407.

    Article  CAS  PubMed  Google Scholar 

  27. Cullity, B. D.; Stock, S. R.; Education, I. Elements of X-ray diffraction. Pearson India Education Services, 2015.

  28. Li, T.; Senesi, A. J.; Lee, B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 2016, 116, 11128–11180.

    Article  CAS  PubMed  Google Scholar 

  29. Giacovazzo, C.; Al, E. Fundamentals of crystallography. Oxford University Press, 2009.

  30. Kittel, C. Introduction to solid state physics. Wiley, 2005.

  31. Yager, K. G.; Zhang, Y.; Lu, F.; Gang, O. Periodic lattices of arbitrary nano-objects: modeling and applications for self-assembled systems. J. Appl. Crystallography 2013, 47, 118–129.

    Article  Google Scholar 

  32. Duhamel, P.; Vetterli, M. Fast fourier transforms: a tutorial review and a state of the art. Signal Processing 1990, 19, 259–299.

    Article  Google Scholar 

  33. Meuler, A. J.; Hillmyer, M. A.; Bates, F. S. Ordered network mesostructures in block polymer materials. Macromolecules 2009, 42, 7221–7250.

    Article  CAS  Google Scholar 

  34. Takenaka, M.; Wakada, T.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Shimizu, H.; Kim, M. I.; Hasegawa, H. Orthorhombic Fddd network in diblock copolymer melts. Macromolecules 2007, 40, 4399–4402.

    Article  CAS  Google Scholar 

  35. Tenneti, K. K.; Chen, X.; Li, C. Y.; Tu, Y.; Wan, X.; Zhou, Q.; Sics, I.; Hsiao, B. S. Perforated layer structures in liquid crystalline rod-coil block copolymers. J. Am. Chem. Soc. 2005, 127, 15481–15490.

    Article  CAS  PubMed  Google Scholar 

  36. **e, N.; Li, W.; Qiu, F.; Shi, A. σ Phase formed in conformationally asymmetric AB-type block copolymers. ACS Macro Lett. 2014, 3, 906–910.

    Article  CAS  PubMed  Google Scholar 

  37. **ang, L.; Li, Q.; Li, C.; Yang, Q.; Xu, F.; Mai, Y. Block copolymer selfassembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications. Adv. Mater. 2023, 35, 2207684.

    Article  CAS  Google Scholar 

  38. Hammond, C. The basics of crystallography and diffraction. Oxford University Press, 2015.

  39. Aroyo, M. I.; Kristallographie, I. U. F. International tables for crystallography. Volume A Space-group symmetry; Chichester, West Sussex Wiley, 2016.

    Book  Google Scholar 

  40. Aoyagi, T. Deep learning model for predicting phase diagrams of block copolymers. Comput. Mater. Sci. 2021, 188, 110224.

    Article  CAS  Google Scholar 

  41. Aoyagi, T. High-throughput prediction of stress-strain curves of thermoplastic elastomer model block copolymers by combining hierarchical simulation and deep learning. MRS Adv. 2021, 6, 32–36.

    Article  CAS  Google Scholar 

  42. Dünweg, B.; Kremer, K. Molecular dynamics simulation of a polymer chain in solution. J. Chem. Phys. 1993, 99, 6983–6997.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 21873021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-**n Liu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YC., Huang, WL. & Liu, YX. Automated Identification of Ordered Phases for Simulation Studies of Block Copolymers. Chin J Polym Sci 42, 683–692 (2024). https://doi.org/10.1007/s10118-024-3084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-024-3084-x

Keywords

Navigation