Log in

Highly Hydrolysis-Resistant Polyimide Fibers Prepared by Thermal Crosslinking with Inherent Carboxyl Groups

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Easy hydrolysis in alkaline environments limits the use of polyimide fibers in environmental protection. The hydrolysis resistance levels of polyimide fibers can be improved by crosslinking of the macromolecular chains. In this work, crosslinked polyimide fibers (CPI fibers) were produced by intrinsic carboxyl decarboxylation for the first time. The thermal stability of the polyimide fibers containing the intrinsic carboxyl groups (PIC fibers) was studied, and the temperature of the decarboxylation-crosslinking reaction was determined to be 450 °C. The PIC fibers were hot-drawn to initiate thermal crosslinking of the carboxyl groups and molecular chain orientation at high temperature. The CPI fibers had high tensile strengths (0.72–1.46 GPa) and compressive strengths (401–604 MPa). The oriented macromolecules and chemically crosslinked structure improved the tightness of the molecular chains and endowed the CPI fibers with excellent hydrolytic resistance. The CPI-50 fiber did not dissolve in a 0.5 wt% NaOH solution during heating at 90 °C for 10 h, and the tensile strength retention reached 87% when treated in 0.5 wt% NaOH solutions at 90 °C for 1 h, providing a guarantee for its application in alkaline corrosive environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukhopadhyay, A.; Pandit, V.; Dhawan, K. Effect of high temperature on the performance of filter fabric. J. Ind. Text. 2015, 45, 1587–1602.

    Article  Google Scholar 

  2. Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.

    Article  CAS  Google Scholar 

  3. Zhou, Z. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Flexible and highly fluorescent aromatic polyimide: design, synthesis, properties, and mechanism. J. Mater. Chem. C 2016, 4, 10509–10517.

    Article  CAS  Google Scholar 

  4. Rusu, R. D.; Constantin, C. P.; Drobota, M.; Gradinaru, L. M.; Butnaru, M.; Pislaru, M. Polyimide films tailored by UV irradiation: surface evaluation and structure-properties relationship. Polym. Degrad. Stabil. 2020, 177, 109182–109294.

    Article  CAS  Google Scholar 

  5. Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 2021, 31, 2008006–2008017.

    Article  CAS  Google Scholar 

  6. Mai, A. T. M.; Thakur, A.; Ton, N. N. T.; Nguyen, T. N.; Kaneko, T.; Taniike, T. Photodegradation of a semi-aromatic bio-derived polyimide. Polym. Degrad. Stabil. 2021, 184, 109472–109478.

    Article  CAS  Google Scholar 

  7. Chang, Y. S.; Kumari, P.; Munro, C. J.; Szekely, G.; Vega, L. F.; Nunes, S.; Dumee, L. F. Plasticization mitigation strategies for gas and liquid filtration membranes-a review. J. Membr. Sci. 2023, 666, 121125–121150.

    Article  CAS  Google Scholar 

  8. Zhang, R. F.; Liu, C.; Hsu, P. C.; Zhang, C. F.; Liu, N.; Zhang, J. S.; Lee, H. R.; Lu, Y. Y.; Qiu, Y. C.; Chu, S.; Cui, Y. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016, 16, 3642–3649.

    Article  PubMed  CAS  Google Scholar 

  9. **e, F.; Wang, Y. F.; Zhuo, L. H.; Ning, D. D.; Yan, N.; Li, J. Y.; Chen, S. S.; Lu, Z. Q. Multiple hydrogen bonding self-assembly tailored electrospun polyimide hybrid filter for efficient air pollution control. J. Hazard. Mater. 2021, 412, 125260–125260.

    Article  PubMed  CAS  Google Scholar 

  10. Wang, L.; Cui, L.; Liu, Y.; Riedel, J.; Qian, X.; Liu, Y. Electrospun polyimide nanofiber-coated polyimide nonwoven fabric for hot gas filtration. Adsorpt. Sci. Technol. 2018, 36, 1734–1743.

    Article  CAS  Google Scholar 

  11. Gholami, F.; Tomas, M.; Gholami, Z.; Vakili, M. Technologies for the nitrogen oxides reduction from flue gas: a review. Sci. Total Environ. 2020, 714, 136712–136737.

    Article  PubMed  CAS  Google Scholar 

  12. Honma, T.; Sato, T. Hydrolysis kinetics of PMDA/ODA polyimide for monomer recovery using sodium hydroxide in high-temperature water. J. Supercrit. Fluids 2020, 166, 105037.

    Article  CAS  Google Scholar 

  13. Pawlowski, W. P.; Coolbaugh, D. D.; Johnson, C. J. Etch rate studies of base-catalyzed-hydrolysis of polyimide film. J. Appl. Polym. Sci. 1991, 43, 1379–1383.

    Article  CAS  Google Scholar 

  14. Fang, D.; Yan, B.; Agarwal, S.; Xu, W. H.; Zhang, Q.; He, S. J.; Hou, H. Q. Electrospun poly[poly(2,5-benzophenone)]bibenzopyrrolone/polyimide nanofiber membrane for high-temperature and strong-alkali supercapacitor. J. Mater. Sci. 2021, 56, 9344–9355.

    Article  CAS  Google Scholar 

  15. Yang, K.; Ni, H. Z.; Shui, T. E.; Chi, X. Y.; Chen, W. B.; Liu, Q.; Xu, J. M.; Wang, Z. High conductivity and alkali-resistant stability of imidazole side chain crosslinked anion exchange membrane. Polymer 2020, 211, 123085–123084.

    Article  CAS  Google Scholar 

  16. Tashvigh, A. A.; Feng, Y.; Weber, M.; Maletzko, C.; Chung, T. S. 110th Anniversary: selection of cross-linkers and cross-linking procedures for the fabrication of solvent-resistant nanofiltration membranes: a review. Ind. Eng. Chem. Res 2019, 58, 10678–10691.

    Article  Google Scholar 

  17. See Toh, Y. H.; Lim, F. W.; Livingston, A. G. Polymeric membranes for nanofiltration in polar aprotic solvents. J. Membr. Sci. 2007, 301, 3–10.

    Article  Google Scholar 

  18. Park, H. B.; Lee, C. H.; Sohn, J. Y.; Lee, Y. M.; Freeman, B. D.; Kim, H. J. Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. J. Membr. Sci. 2006, 285, 432–443.

    Article  CAS  Google Scholar 

  19. Soroko, I.; Bhole, Y.; Livingston, A. G. Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chem. 2011, 13, 162–168.

    Article  CAS  Google Scholar 

  20. Byun, S.; Lee, S. H.; Song, D.; Ryou, M. H.; Lee, Y. M.; Park, W. H. A crosslinked nonwoven separator based on an organosoluble polyimide for high-performance lithium-ion batteries. J. Ind. Eng. Chem. 2019, 72, 390–399.

    Article  CAS  Google Scholar 

  21. Kratochvil, A. M.; Koros, W. J. Decarboxylation-induced cross-linking of a polyimide for enhanced CO2 plasticization resistance. Macromolecules 2008, 41, 7920–7927.

    Article  CAS  Google Scholar 

  22. Qiu, W.; Chen, C. C.; Xu, L.; Cui, L.; Paul, D. R.; Koros, W. J. Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation. Macromolecules 2011, 44, 6046–6056.

    Article  CAS  Google Scholar 

  23. Zhang, C.; Li, P.; Cao, B. Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance. J. Membr. Sci. 2017, 528, 206–216.

    Article  CAS  Google Scholar 

  24. Du, N.; Dal-Cin, M. M.; Robertson, G. P.; Guiver, M. D. Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation. Macromolecules 2012, 45, 5134–5139.

    Article  CAS  Google Scholar 

  25. Cheng, Z.; Liu, Y.; Meng, C. B.; Dai, Y.; Luo, L. B.; Liu, X. Y. Constructing a weaving structure for aramid fiber by carbon nanotube-based network to simultaneously improve composites interfacial properties and compressive properties. Compos. Sci. Technol. 2019, 182, 107721–107729.

    Article  CAS  Google Scholar 

  26. Zheng, S. S.; Dong, J.; Zhou, X. Y.; Li, X. T.; Zhao, X.; Zhang, Q. H. High-strength and high-modulus polyimide fibers with excellent UV and ozone resistance. ACS Appl. Polym. 2022, 4, 4558–4567.

    Article  CAS  Google Scholar 

  27. Xu, Y.; Zhang, Q. Two-dimensional fourier transform infrared (FT-IR) correlation spectroscopy study of the imidization reaction from polyamic acid to polyimide. Appl. Spectrosc. 2014, 68, 657–662.

    Article  PubMed  CAS  Google Scholar 

  28. Xu, S.; Wang, Y. Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation. J. Membr. Sci. 2015, 496, 142–155.

    Article  CAS  Google Scholar 

  29. Xu, Y. M.; Le, N. L.; Zuo, J.; Chung, T. S. Aromatic polyimide and crosslinked thermally rearranged poly(benzoxazole-co-imide) membranes for isopropanol dehydration via pervaporation. J. Membr. Sci. 2016, 499, 317–325.

    Article  CAS  Google Scholar 

  30. Fang, Y. T.; Gan, F.; Dong, J.; Zhao, X.; Li, X. T.; Zhang, Q. H. Preparation of high-performance polyimide fibers with wholly rigid structures containing benzobisoxazole moieties. Chinese J. Polym. Sci. 2022, 40, 280–289.

    Article  CAS  Google Scholar 

  31. Wang, J.; Zhang, H.; Miao, Y.; Qiao, L.; Wang, X.; Wang, F. UV-curable waterborne polyurethane from CO2-polyol with high hydrolysis resistance. Polymer 2016, 100, 219–226.

    Article  CAS  Google Scholar 

  32. Fu, H.; Gong, L. B.; Gong, S. L. A new approach utilizing azamichael addition for hydrolysis-resistance non-ionic waterborne polyester. Polymers 2022, 14, 2655–2671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yu, W.; Ko, T. M. Surface characterizations of potassium-hydroxide-modified Upilex-S® polyimide at an elevated temperature. Eur. Polym. J. 2001, 37, 1791–1799.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific Research Innovation Plan of Shanghai Education Commission (No. 2019-01-07-00-03-E00001), the National Natural Science Foundation of China (Nos. U21A2087 and 21975040) and the Natural Science Foundation of Shanghai (No. 21ZR1400200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Hua Zhang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, SX., Dong, J., Li, XT. et al. Highly Hydrolysis-Resistant Polyimide Fibers Prepared by Thermal Crosslinking with Inherent Carboxyl Groups. Chin J Polym Sci 42, 247–255 (2024). https://doi.org/10.1007/s10118-023-3015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3015-2

Keywords

Navigation